Contents

1 Symmetric Rational Inequalities 1
 1.1 Applications 1
 1.2 Solutions 31

A Glossary 257
Chapter 1

Symmetric Rational Inequalities

1.1 Applications

1.1. If a, b, c are nonnegative real numbers, then

$$\frac{a^2 - bc}{3a + b + c} + \frac{b^2 - ca}{3b + c + a} + \frac{c^2 - ab}{3c + a + b} \geq 0.$$

1.2. If a, b, c are positive real numbers, then

$$\frac{4a^2 - b^2 - c^2}{a(b + c)} + \frac{4b^2 - c^2 - a^2}{b(c + a)} + \frac{4c^2 - a^2 - b^2}{c(a + b)} \leq 3.$$

1.3. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a) \[\frac{1}{a^2 + bc} + \frac{1}{b^2 + ca} + \frac{1}{c^2 + ab} \geq \frac{3}{ab + bc + ca}; \]

(b) \[\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab} \geq \frac{2}{ab + bc + ca}. \]

(c) \[\frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} > \frac{2}{ab + bc + ca}. \]

1.4. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{a(b + c)}{a^2 + bc} + \frac{b(c + a)}{b^2 + ca} + \frac{c(a + b)}{c^2 + ab} \geq 2.$$
1.5. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} \geq \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b}.
\]

1.6. Let \(a, b, c\) be positive real numbers. Prove that
\[
\frac{1}{b + c} + \frac{1}{c + a} + \frac{1}{a + b} \geq \frac{a}{a^2 + bc} + \frac{b}{b^2 + ca} + \frac{c}{c^2 + ab}.
\]

1.7. Let \(a, b, c\) be positive real numbers. Prove that
\[
\frac{1}{b + c} + \frac{1}{c + a} + \frac{1}{a + b} \geq \frac{2a}{3a^2 + bc} + \frac{2b}{3b^2 + ca} + \frac{2c}{3c^2 + ab}.
\]

1.8. Let \(a, b, c\) be positive real numbers. Prove that
\[
\begin{align*}
(a) & \quad \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq \frac{13}{6} - \frac{2(ab + bc + ca)}{3(a^2 + b^2 + c^2)}; \\
(b) & \quad \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} - \frac{3}{2} \geq (\sqrt{3} - 1) \left(1 - \frac{ab + bc + ca}{a^2 + b^2 + c^2}\right).
\end{align*}
\]

1.9. Let \(a, b, c\) be positive real numbers. Prove that
\[
\frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} \leq \left(\frac{a + b + c}{ab + bc + ca}\right)^2.
\]

1.10. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2(b + c)}{b^2 + c^2} + \frac{b^2(c + a)}{c^2 + a^2} + \frac{c^2(a + b)}{a^2 + b^2} \geq a + b + c.
\]

1.11. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2 + b^2}{a + b} + \frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} \leq \frac{3(a^2 + b^2 + c^2)}{a + b + c}.
\]
1.12. Let a, b, c be positive real numbers. Prove that
\[
\frac{1}{a^2 + ab + b^2} + \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} \geq \frac{9}{(a + b + c)^2}.
\]

1.13. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2}{(2a + b)(2a + c)} + \frac{b^2}{(2b + c)(2b + a)} + \frac{c^2}{(2c + a)(2c + b)} \leq \frac{1}{3}.
\]

1.14. Let a, b, c be positive real numbers. Prove that
\[
\begin{align*}
(a) & \quad \sum \frac{a}{(2a + b)(2a + c)} \leq \frac{1}{a + b + c}; \\
(b) & \quad \sum \frac{a^3}{(2a^2 + b^2)(2a^2 + c^2)} \leq \frac{1}{a + b + c}.
\end{align*}
\]

1.15. If a, b, c are positive real numbers, then
\[
\sum \frac{1}{(a + 2b)(a + 2c)} \geq \frac{1}{(a + b + c)^2} + \frac{2}{3(a b + bc + ca)}.
\]

1.16. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
\[
\begin{align*}
(a) & \quad \frac{1}{(a - b)^2} + \frac{1}{(b - c)^2} + \frac{1}{(c - a)^2} \geq \frac{4}{ab + bc + ca}; \\
(b) & \quad \frac{1}{a^2 - ab + b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} \geq \frac{3}{ab + bc + ca}; \\
(c) & \quad \frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \geq \frac{5}{2(ab + bc + ca)}.
\end{align*}
\]

1.17. Let a, b, c be positive real numbers, no two of which are zero. Prove that
\[
\frac{(a^2 + b^2)(a^2 + c^2)}{(a + b)(a + c)} + \frac{(b^2 + c^2)(b^2 + a^2)}{(b + c)(b + a)} + \frac{(c^2 + a^2)(c^2 + b^2)}{(c + a)(c + b)} \geq a^2 + b^2 + c^2.
\]
1.18. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that
\[
\frac{1}{a^2 + b + c} + \frac{1}{b^2 + c + a} + \frac{1}{c^2 + a + b} \leq 1.
\]

1.19. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{a^2 - bc}{a^2 + 3} + \frac{b^2 - ca}{b^2 + 3} + \frac{c^2 - ab}{c^2 + 3} \geq 0.
\]

1.20. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{1 - bc}{5 + 2a} + \frac{1 - ca}{5 + 2b} + \frac{1 - ab}{5 + 2c} \geq 0.
\]

1.21. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that
\[
\frac{1}{a^2 + b^2 + 2} + \frac{1}{b^2 + c^2 + 2} + \frac{1}{c^2 + a^2 + 2} \leq \frac{3}{4}.
\]

1.22. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that
\[
\frac{1}{4a^2 + b^2 + c^2} + \frac{1}{4b^2 + c^2 + a^2} + \frac{1}{4c^2 + a^2 + b^2} \leq \frac{1}{2}.
\]

1.23. Let a, b, c be nonnegative real numbers such that $a + b + c = 2$. Prove that
\[
\frac{bc}{a^2 + 1} + \frac{ca}{b^2 + 1} + \frac{ab}{c^2 + 1} \leq 1.
\]

1.24. Let a, b, c be nonnegative real numbers such that $a + b + c = 1$. Prove that
\[
\frac{bc}{a + 1} + \frac{ca}{b + 1} + \frac{ab}{c + 1} \leq \frac{1}{4}.
\]

1.25. Let a, b, c be positive real numbers such that $a + b + c = 1$. Prove that
\[
\frac{1}{a(2a^2 + 1)} + \frac{1}{b(2b^2 + 1)} + \frac{1}{c(2c^2 + 1)} \leq \frac{3}{11abc}.
\]
1.26. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{1}{a^3 + b + c} + \frac{1}{b^3 + c + a} + \frac{1}{c^3 + a + b} \leq 1.$$

1.27. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{a^2}{1 + b^3 + c^3} + \frac{b^2}{1 + c^3 + a^3} + \frac{c^2}{1 + a^3 + b^3} \geq 1.$$

1.28. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that

$$\frac{1}{6 - ab} + \frac{1}{6 - bc} + \frac{1}{6 - ca} \leq \frac{3}{5}.$$

1.29. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that

$$\frac{1}{2a^2 + 7} + \frac{1}{2b^2 + 7} + \frac{1}{2c^2 + 7} \leq \frac{1}{3}.$$

1.30. Let a, b, c be nonnegative real numbers such that $a \geq b \geq 1 \geq c$ and $a + b + c = 3$. Prove that

$$\frac{1}{a^2 + 3} + \frac{1}{b^2 + 3} + \frac{1}{c^2 + 3} \leq \frac{3}{4}.$$

1.31. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that

$$\frac{1}{2a^2 + 3} + \frac{1}{2b^2 + 3} + \frac{1}{2c^2 + 3} \geq \frac{3}{5}.$$

1.32. Let a, b, c be nonnegative real numbers such that $a \geq 1 \geq b \geq c$ and $a + b + c = 3$. Prove that

$$\frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2} \geq 1.$$

1.33. Let a, b, c be nonnegative real numbers such that $ab + bc + ca = 3$. Prove that

$$\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} \geq \frac{a + b + c}{6} + \frac{3}{a + b + c}.$$
1.34. Let \(a, b, c\) be nonnegative real numbers such that \(ab + bc + ca = 3\). Prove that

\[
\frac{1}{a^2 + 1} + \frac{1}{b^2 + 1} + \frac{1}{c^2 + 1} \geq \frac{3}{2}.
\]

1.35. Let \(a, b, c\) be positive real numbers such that \(ab + bc + ca = 3\). Prove that

\[
\frac{a^2}{a^2 + b + c} + \frac{b^2}{b^2 + c + a} + \frac{c^2}{c^2 + a + b} \geq 1.
\]

1.36. Let \(a, b, c\) be positive real numbers such that \(ab + bc + ca = 3\). Prove that

\[
\frac{bc + 4}{a^2 + 4} + \frac{ca + 4}{b^2 + 4} + \frac{ab + 4}{c^2 + 4} \leq 3 \leq \frac{bc + 2}{a^2 + 2} + \frac{ca + 2}{b^2 + 2} + \frac{ab + 2}{c^2 + 2}.
\]

1.37. Let \(a, b, c\) be nonnegative real numbers such that \(ab + bc + ca = 3\). If \(k \geq 2 + \sqrt{3}\), then

\[
\frac{1}{a + k} + \frac{1}{b + k} + \frac{1}{c + k} \leq \frac{3}{1 + k}.
\]

1.38. Let \(a, b, c\) be nonnegative real numbers such that \(a^2 + b^2 + c^2 = 3\). Prove that

\[
\frac{a(b + c)}{1 + bc} + \frac{b(c + a)}{1 + ca} + \frac{c(a + b)}{1 + ab} \leq 3.
\]

1.39. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 = 3\). Prove that

\[
\frac{a^2 + b^2}{a + b} + \frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} \leq 3.
\]

1.40. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 = 3\). Prove that

\[
\frac{ab}{a + b} + \frac{bc}{b + c} + \frac{ca}{c + a} + 2 \leq \frac{7}{6}(a + b + c).
\]
1.41. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 = 3\). Prove that

(a) \[
\frac{1}{3-ab} + \frac{1}{3-bc} + \frac{1}{3-ca} \leq \frac{3}{2};
\]

(b) \[
\frac{1}{\sqrt{6}-ab} + \frac{1}{\sqrt{6}-bc} + \frac{1}{\sqrt{6}-ca} \leq \frac{3}{\sqrt{6}-1}.
\]

1.42. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 = 3\). Prove that

\[
\frac{1}{1+a^5} + \frac{1}{1+b^5} + \frac{1}{1+c^5} \geq \frac{3}{2}.
\]

1.43. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that

\[
\frac{1}{a^2+a+1} + \frac{1}{b^2+b+1} + \frac{1}{c^2+c+1} \geq 1.
\]

1.44. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that

\[
\frac{1}{a^2-a+1} + \frac{1}{b^2-b+1} + \frac{1}{c^2-c+1} \leq 3.
\]

1.45. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that

\[
\frac{3+a}{(1+a)^2} + \frac{3+b}{(1+b)^2} + \frac{3+c}{(1+c)^2} \geq 3.
\]

1.46. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that

\[
\frac{7-6a}{2+a^2} + \frac{7-6b}{2+b^2} + \frac{7-6c}{2+c^2} \geq 1.
\]

1.47. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that

\[
\frac{a^6}{1+2a^5} + \frac{b^6}{1+2b^5} + \frac{c^6}{1+2c^5} \geq 1.
\]
1.48. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that
\[
\frac{a}{a^2 + 5} + \frac{b}{b^2 + 5} + \frac{c}{c^2 + 5} \leq \frac{1}{2}.
\]

1.49. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that
\[
\frac{1}{(1 + a)^2} + \frac{1}{(1 + b)^2} + \frac{1}{(1 + c)^2} + \frac{2}{(1 + a)(1 + b)(1 + c)} \geq 1.
\]

1.50. Let \(a, b, c\) be nonnegative real numbers such that
\[
\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} = \frac{3}{2}.
\]
Prove that
\[
\frac{3}{a + b + c} \geq \frac{2}{ab + bc + ca} + \frac{1}{a^2 + b^2 + c^2}.
\]

1.51. Let \(a, b, c\) be nonnegative real numbers such that
\[
7(a^2 + b^2 + c^2) = 11(ab + bc + ca).
\]
Prove that
\[
\frac{51}{28} \leq \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \leq 2.
\]

1.52. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \geq \frac{10}{(a + b + c)^2}.
\]

1.53. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{a^2 - ab + b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} \geq \frac{3}{\max\{ab, bc, ca\}}.
\]

1.54. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a(2a + b + c)}{b^2 + c^2} + \frac{b(2b + c + a)}{c^2 + a^2} + \frac{c(2c + a + b)}{a^2 + b^2} \geq 6.
\]
1.55. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2(b + c)^2}{b^2 + c^2} + \frac{b^2(c + a)^2}{c^2 + a^2} + \frac{c^2(a + b)^2}{a^2 + b^2} \geq 2(ab + bc + ca).
\]

1.56. If a, b, c are real numbers such that $abc > 0$, then
\[
3 \sum \frac{a}{b^2 - bc + c^2} + 5 \left(\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab}\right) \geq 8 \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).
\]

1.57. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
(a) \[2abc \left(\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a}\right) + a^2 + b^2 + c^2 \geq 2(ab + bc + ca);
\]
(b) \[
\frac{a^2}{a + b} + \frac{b^2}{b + c} + \frac{c^2}{c + a} \leq \frac{3(a^2 + b^2 + c^2)}{2(a + b + c)}.
\]

1.58. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
(a) \[
\frac{a^2 - bc}{b^2 + c^2} + \frac{b^2 - ca}{c^2 + a^2} + \frac{c^2 - ab}{a^2 + b^2} + \frac{3(ab + bc + ca)}{a^2 + b^2 + c^2} \geq 3;
\]
(b) \[
\frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} + \frac{ab + bc + ca}{a^2 + b^2 + c^2} \geq \frac{5}{2};
\]
(c) \[
\frac{a^2 + bc}{b^2 + c^2} + \frac{b^2 + ca}{c^2 + a^2} + \frac{c^2 + ab}{a^2 + b^2} \geq \frac{ab + bc + ca}{a^2 + b^2 + c^2} + 2.
\]

1.59. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} \geq \frac{(a + b + c)^2}{2(ab + bc + ca)}.
\]

1.60. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{2ab}{(a + b)^2} + \frac{2bc}{(b + c)^2} + \frac{2ca}{(c + a)^2} + \frac{a^2 + b^2 + c^2}{ab + bc + ca} \geq \frac{5}{2}.
\]
1.61. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{ab}{(a+b)^2} + \frac{bc}{(b+c)^2} + \frac{ca}{(c+a)^2} + \frac{1}{4} \geq \frac{ab + bc + ca}{a^2 + b^2 + c^2}.
\]

1.62. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{3ab}{(a+b)^2} + \frac{3bc}{(b+c)^2} + \frac{3ca}{(c+a)^2} \leq \frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{5}{4}.
\]

1.63. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a) \[\frac{a^3 + abc}{b+c} + \frac{b^3 + abc}{c+a} + \frac{c^3 + abc}{a+b} \geq a^2 + b^2 + c^2;\]

(b) \[\frac{a^3 + 2abc}{b+c} + \frac{b^3 + 2abc}{c+a} + \frac{c^3 + 2abc}{a+b} \geq \frac{1}{2}(a+b+c)^2;\]

(c) \[\frac{a^3 + 3abc}{b+c} + \frac{b^3 + 3abc}{c+a} + \frac{c^3 + 3abc}{a+b} \geq 2(ab + bc + ca).\]

1.64. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

\[\frac{a^2 + 3abc}{(b+c)^2} + \frac{b^2 + 3abc}{(c+a)^2} + \frac{c^2 + 3abc}{(a+b)^2} \geq a + b + c.\]

1.65. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a) \[\frac{a^3 + 3abc}{(b+c)^3} + \frac{b^3 + 3abc}{(c+a)^3} + \frac{c^3 + 3abc}{(a+b)^3} \geq \frac{3}{2};\]

(b) \[\frac{3a^3 + 13abc}{(b+c)^3} + \frac{3b^3 + 13abc}{(c+a)^3} + \frac{3c^3 + 13abc}{(a+b)^3} \geq 6.\]

1.66. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a) \[\frac{a^3}{b+c} + \frac{b^3}{c+a} + \frac{c^3}{a+b} + ab + bc + ca \geq \frac{3}{2}(a^2 + b^2 + c^2);\]

(b) \[\frac{2a^2 + bc}{b+c} + \frac{2b^2 + ca}{c+a} + \frac{2c^2 + ab}{a+b} \geq \frac{9(a^2 + b^2 + c^2)}{2(a+b+c)}.\]
1.67. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a(b + c)}{b^2 + bc + c^2} + \frac{b(c + a)}{c^2 + ca + a^2} + \frac{c(a + b)}{a^2 + ab + b^2} \geq 2.
\]

1.68. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a(b + c)}{b^2 + bc + c^2} + \frac{b(c + a)}{c^2 + ca + a^2} + \frac{c(a + b)}{a^2 + ab + b^2} \geq 2 + 4 \prod \left(\frac{a - b}{a + b} \right)^2.
\]

1.69. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{ab - bc + ca}{b^2 + c^2} + \frac{bc - ca + ab}{c^2 + a^2} + \frac{ca - ab + bc}{a^2 + b^2} \geq \frac{3}{2}.
\]

1.70. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. If \(k > -2 \), then
\[
\sum \frac{ab + (k - 1)bc + ca}{b^2 + kbc + c^2} \geq \frac{3(k + 1)}{k + 2}.
\]

1.71. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. If \(k > -2 \), then
\[
\sum \frac{3bc - a(b + c)}{b^2 + kbc + c^2} \leq \frac{3}{k + 2}.
\]

1.72. Let \(a, b, c \) be nonnegative real numbers such that \(ab + bc + ca = 3 \). Prove that
\[
\frac{ab + 1}{a^2 + b^2} + \frac{bc + 1}{b^2 + c^2} + \frac{ca + 1}{c^2 + a^2} \geq 4 \cdot \frac{3}{3}.
\]

1.73. Let \(a, b, c \) be nonnegative real numbers such that \(ab + bc + ca = 3 \). Prove that
\[
\frac{5ab + 1}{(a + b)^2} + \frac{5bc + 1}{(b + c)^2} + \frac{5ca + 1}{(c + a)^2} \geq 2.
\]

1.74. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2 - bc}{2b^2 - 3bc + 2c^2} + \frac{b^2 - ca}{2c^2 - 3ca + 2a^2} + \frac{c^2 - ab}{2a^2 - 3ab + 2b^2} \geq 0.
\]
1.75. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{2a^2 - bc}{b^2 - bc + c^2} + \frac{2b^2 - ca}{c^2 - ca + a^2} + \frac{2c^2 - ab}{a^2 - ab + b^2} \geq 3.$$

1.76. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{a^2}{2b^2 - bc + 2c^2} + \frac{b^2}{2c^2 - ca + 2a^2} + \frac{c^2}{2a^2 - ab + 2b^2} \geq 1.$$

1.77. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{1}{4b^2 - bc + 4c^2} + \frac{1}{4c^2 - ca + 4a^2} + \frac{1}{4a^2 - ab + 4b^2} \geq \frac{9}{7(a^2 + b^2 + c^2)}.$$

1.78. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{2a^2 + bc}{b^2 + c^2} + \frac{2b^2 + ca}{c^2 + a^2} + \frac{2c^2 + ab}{a^2 + b^2} \geq \frac{9}{2}.$$

1.79. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{2a^2 + 3bc}{b^2 + bc + c^2} + \frac{2b^2 + 3ca}{c^2 + ca + a^2} + \frac{2c^2 + 3ab}{a^2 + ab + b^2} \geq 5.$$

1.80. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{2a^2 + 5bc}{(b + c)^2} + \frac{2b^2 + 5ca}{(c + a)^2} + \frac{2c^2 + 5ab}{(a + b)^2} \geq \frac{21}{4}.$$

1.81. Let a, b, c be nonnegative real numbers, no two of which are zero. If $k > -2$, then

$$\sum \frac{2a^2 + (2k + 1)bc}{b^2 + kbc + c^2} \geq \frac{3(2k + 3)}{k + 2}.$$
1.82. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(k > -2\), then
\[
\sum \frac{3bc - 2a^2}{b^2 + kbc + c^2} \leq \frac{3}{k + 2}.
\]

1.83. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{a^2 + 16bc}{b^2 + c^2} + \frac{b^2 + 16ca}{c^2 + a^2} + \frac{c^2 + 16ab}{a^2 + b^2} \geq 10.
\]

1.84. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{a^2 + 128bc}{b^2 + c^2} + \frac{b^2 + 128ca}{c^2 + a^2} + \frac{c^2 + 128ab}{a^2 + b^2} \geq 46.
\]

1.85. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{a^2 + 64bc}{(b + c)^2} + \frac{b^2 + 64ca}{(c + a)^2} + \frac{c^2 + 64ab}{(a + b)^2} \geq 18.
\]

1.86. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(k \geq -1\), then
\[
\sum \frac{a^2(b + c) + kabc}{b^2 + kbc + c^2} \geq a + b + c.
\]

1.87. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(k \geq -\frac{3}{2}\), then
\[
\sum \frac{a^3 + (k + 1)abc}{b^2 + kbc + c^2} \geq a + b + c.
\]

1.88. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(k > 0\), then
\[
\frac{2a^k - b^k - c^k}{b^2 - bc + c^2} + \frac{2b^k - c^k - a^k}{c^2 - ca + a^2} + \frac{2c^k - a^k - b^k}{a^2 - ab + b^2} \geq 0.
\]
1.89. If a, b, c are the lengths of the sides of a triangle, then

(a) $\frac{b + c - a}{b^2 - bc + c^2} + \frac{c + a - b}{c^2 - ca + a^2} + \frac{a + b - c}{a^2 - ab + b^2} \leq \frac{2(a + b + c)}{a^2 + b^2 + c^2}$;

(b) $\frac{a^2 - 2bc}{b^2 - bc + c^2} + \frac{b^2 - 2ca}{c^2 - ca + a^2} + \frac{c^2 - 2ab}{a^2 - ab + b^2} \leq 0$.

1.90. If a, b, c are nonnegative real numbers, then

$$\frac{a^2}{5a^2 + (b + c)^2} + \frac{b^2}{5b^2 + (c + a)^2} + \frac{c^2}{5c^2 + (a + b)^2} \leq \frac{1}{3}.$$

1.91. If a, b, c are nonnegative real numbers, then

$$\frac{b^2 + c^2 - a^2}{2a^2 + (b + c)^2} + \frac{c^2 + a^2 - b^2}{2b^2 + (c + a)^2} + \frac{a^2 + b^2 - c^2}{2c^2 + (a + b)^2} \geq \frac{1}{2}.$$

1.92. Let a, b, c be positive real numbers. If $k > 0$, then

$$\frac{3a^2 - 2bc}{ka^2 + (b - c)^2} + \frac{3b^2 - 2ca}{kb^2 + (c - a)^2} + \frac{3c^2 - 2ab}{kc^2 + (a - b)^2} \leq \frac{3}{k}.$$

1.93. Let a, b, c be nonnegative real numbers, no two of which are zero. If $k \geq 3 + \sqrt{7}$, then

(a) $\frac{a}{a^2 + kbc} + \frac{b}{b^2 + kca} + \frac{c}{c^2 + kab} \geq \frac{9}{(1 + k)(a + b + c)}$;

(b) $\frac{1}{ka^2 + bc} + \frac{1}{kb^2 + ca} + \frac{1}{kc^2 + ab} \geq \frac{9}{(k + 1)(ab + bc + ca)}$.

1.94. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab} \geq \frac{6}{a^2 + b^2 + c^2 + ab + bc + ca}.$$
1.95. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{2a^2 + 5bc} + \frac{1}{2b^2 + 5ca} + \frac{1}{2c^2 + 5ab} \geq \frac{1}{(a + b + c)^2}.
\]

1.96. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab} \geq \frac{8}{(a + b + c)^2}.
\]

1.97. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{a^2 + bc} + \frac{1}{b^2 + ca} + \frac{1}{c^2 + ab} \geq \frac{12}{(a + b + c)^2}.
\]

1.98. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\begin{align*}
(a) & \quad \frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} \geq \frac{1}{a^2 + b^2 + c^2} + \frac{2}{ab + bc + ca}; \\
(b) & \quad \frac{a(b + c)}{a^2 + 2bc} + \frac{b(c + a)}{b^2 + 2ca} + \frac{c(a + b)}{c^2 + 2ab} \geq 1 + \frac{ab + bc + ca}{a^2 + b^2 + c^2}.
\end{align*}
\]

1.99. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\begin{align*}
(a) & \quad \frac{a}{a^2 + 2bc} + \frac{b}{b^2 + 2ca} + \frac{c}{c^2 + 2ab} \leq \frac{a + b + c}{ab + bc + ca}; \\
(b) & \quad \frac{a(b + c)}{a^2 + 2bc} + \frac{b(c + a)}{b^2 + 2ca} + \frac{c(a + b)}{c^2 + 2ab} \leq 1 + \frac{a^2 + b^2 + c^2}{ab + bc + ca}.
\end{align*}
\]

1.100. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\begin{align*}
(a) & \quad \frac{a}{2a^2 + bc} + \frac{b}{2b^2 + ca} + \frac{c}{2c^2 + ab} \geq \frac{a + b + c}{a^2 + b^2 + c^2}; \\
(b) & \quad \frac{b + c}{2a^2 + bc} + \frac{c + a}{2b^2 + ca} + \frac{a + b}{2c^2 + ab} \geq \frac{6}{a + b + c}.
\end{align*}
\]
1.101. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{a(b + c)}{a^2 + bc} + \frac{b(c + a)}{b^2 + ca} + \frac{c(a + b)}{c^2 + ab} \geq \frac{(a + b + c)^2}{a^2 + b^2 + c^2}.
\]

1.102. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. If \(k > 0 \), then

\[
\frac{b^2 + c^2 + \sqrt{3}bc}{a^2 + kbc} + \frac{c^2 + a^2 + \sqrt{3}ca}{b^2 + kca} + \frac{a^2 + b^2 + \sqrt{3}ab}{c^2 + kab} \geq \frac{3(2 + \sqrt{3})}{1 + k}.
\]

1.103. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{8}{a^2 + b^2 + c^2} \geq \frac{6}{ab + bc + ca}.
\]

1.104. If \(a, b, c \) are the lengths of the sides of a triangle, then

\[
\frac{a(b + c)}{a^2 + 2bc} + \frac{b(c + a)}{b^2 + 2ca} + \frac{c(a + b)}{c^2 + 2ab} \leq 2.
\]

1.105. If \(a, b, c \) are real numbers, then

\[
\frac{a^2 - bc}{2a^2 + b^2 + c^2} + \frac{b^2 - ca}{2b^2 + c^2 + a^2} + \frac{c^2 - ab}{2c^2 + a^2 + b^2} \geq 0.
\]

1.106. If \(a, b, c \) are nonnegative real numbers, then

\[
\frac{3a^2 - bc}{2a^2 + b^2 + c^2} + \frac{3b^2 - ca}{2b^2 + c^2 + a^2} + \frac{3c^2 - ab}{2c^2 + a^2 + b^2} \leq \frac{3}{2}.
\]

1.107. If \(a, b, c \) are nonnegative real numbers, then

\[
\frac{(b + c)^2}{4a^2 + b^2 + c^2} + \frac{(c + a)^2}{4b^2 + c^2 + a^2} + \frac{(a + b)^2}{4c^2 + a^2 + b^2} \geq 2.
\]
1.108. If \(a, b, c\) are positive real numbers, then

(a) \[\sum \frac{1}{11a^2 + 2b^2 + 2c^2} \leq \frac{3}{5(ab + bc + ca)};\]

(b) \[\sum \frac{1}{4a^2 + b^2 + c^2} \leq \frac{1}{2(a^2 + b^2 + c^2)} + \frac{1}{ab + bc + ca}.\]

1.109. If \(a, b, c\) are nonnegative real numbers such that \(ab + bc + ca = 3\), then

\[\frac{\sqrt{a}}{b + c} + \frac{\sqrt{b}}{c + a} + \frac{\sqrt{c}}{a + b} \geq \frac{3}{2}.\]

1.110. If \(a, b, c\) are nonnegative real numbers such that \(ab + bc + ca \geq 3\), then

\[\frac{1}{2 + a} + \frac{1}{2 + b} + \frac{1}{2 + c} \geq \frac{1}{1 + b + c} + \frac{1}{1 + c + a} + \frac{1}{1 + a + b}.\]

1.111. If \(a, b, c\) are the lengths of the sides of a triangle, then

(a) \[\frac{a^2 - bc}{3a^2 + b^2 + c^2} + \frac{b^2 - ca}{3b^2 + c^2 + a^2} + \frac{c^2 - ab}{3c^2 + a^2 + b^2} \leq 0;\]

(b) \[\frac{a^4 - b^2c^2}{3a^4 + b^4 + c^4} + \frac{b^4 - c^2a^2}{3b^4 + c^4 + a^4} + \frac{c^4 - a^2b^2}{3c^4 + a^4 + b^4} \leq 0.\]

1.112. If \(a, b, c\) are the lengths of the sides of a triangle, then

\[\frac{bc}{4a^2 + b^2 + c^2} + \frac{ca}{4b^2 + c^2 + a^2} + \frac{ab}{4c^2 + a^2 + b^2} \geq \frac{1}{2}.\]

1.113. If \(a, b, c\) are the lengths of the sides of a triangle, then

\[\frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{1}{a^2 + b^2} \leq \frac{9}{2(ab + bc + ca)}.\]
1.114. If \(a, b, c\) are the lengths of the sides of a triangle, then

(a) \[\frac{a + b}{a - b} + \frac{b + c}{b - c} + \frac{c + a}{c - a} \geq 5;\]

(b) \[\frac{a^2 + b^2}{a^2 - b^2} + \frac{b^2 + c^2}{b^2 - c^2} + \frac{c^2 + a^2}{c^2 - a^2} \geq 3.\]

1.115. If \(a, b, c\) are the lengths of the sides of a triangle, then

\[\frac{b + c}{a} + \frac{c + a}{b} + \frac{a + b}{c} + 3 \geq 6 \left(\frac{a}{a + b} + \frac{b}{b + c} + \frac{c}{c + a}\right).\]

1.116. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

\[\sum\frac{3a(b + c) - 2bc}{(b + c)(2a + b + c)} \geq \frac{3}{2}.\]

1.117. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

\[\sum\frac{a(b + c) - 2bc}{(b + c)(3a + b + c)} \geq 0.\]

1.118. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 \geq 3\). Prove that

\[\frac{a^5 - a^2}{a^5 + b^2 + c^2} + \frac{b^5 - b^2}{b^5 + c^2 + a^2} + \frac{c^5 - c^2}{c^5 + a^2 + b^2} \geq 0.\]

1.119. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 = a^3 + b^3 + c^3\). Prove that

\[\frac{a^2}{b + c} + \frac{b^2}{c + a} + \frac{c^2}{a + b} \geq \frac{3}{2}.\]

1.120. If \(a, b, c \in [0, 1]\), then

(a) \[\frac{a}{bc + 2} + \frac{b}{ca + 2} + \frac{c}{ab + 2} \leq 1;\]

(b) \[\frac{ab}{2bc + 1} + \frac{bc}{2ca + 1} + \frac{ca}{2ab + 1} \leq 1.\]
1.121. Let a, b, c be positive real numbers such that $a + b + c = 2$. Prove that
\[
5(1 - ab - bc - ca)\left(\frac{1}{1 - ab} + \frac{1}{1 - bc} + \frac{1}{1 - ca}\right) + 9 \geq 0.
\]

1.122. Let a, b, c be nonnegative real numbers such that $a + b + c = 2$. Prove that
\[
2 - a^2 \leq 2 - bc \leq 3.
\]

1.123. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{3 + 5a^2}{3 - bc} + \frac{3 + 5b^2}{3 - ca} + \frac{3 + 5c^2}{3 - ab} \geq 12.
\]

1.124. Let a, b, c be nonnegative real numbers such that $a + b + c = 2$. If \[-\frac{1}{7} \leq m \leq \frac{7}{8},\] then
\[
\frac{a^2 + m}{3 - 2bc} + \frac{b^2 + m}{3 - 2ca} + \frac{c^2 + m}{3 - 2ab} \geq \frac{3(4 + 9m)}{19}.
\]

1.125. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{47 - 7a^2}{1 + bc} + \frac{47 - 7b^2}{1 + ca} + \frac{47 - 7c^2}{1 + ab} \geq 60.
\]

1.126. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{26 - 7a^2}{1 + bc} + \frac{26 - 7b^2}{1 + ca} + \frac{26 - 7c^2}{1 + ab} \leq \frac{57}{2}.
\]

1.127. Let a, b, c be nonnegative real numbers, no all are zero. Prove that
\[
\sum \frac{5a(b + c) - 6bc}{a^2 + b^2 + c^2 + bc} \leq 3.
\]
Let \(a, b, c \) be nonnegative real numbers, no two of which are zero, and let
\[
x = \frac{a^2 + b^2 + c^2}{ab + bc + ca}.
\]
Prove that
(a) \(\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} + \frac{1}{2} \geq x + \frac{1}{x} \);
(b) \(6 \left(\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \right) \geq 5x + \frac{4}{x} \);
(c) \(\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} - \frac{3}{2} \geq \frac{1}{3} \left(x - \frac{1}{x} \right) \).

If \(a, b, c \) are real numbers, then
\[
\frac{1}{a^2 + 7(b^2 + c^2)} + \frac{1}{b^2 + 7(c^2 + a^2)} + \frac{1}{c^2 + 7(a^2 + b^2)} \leq \frac{9}{5(a + b + c)^2}.
\]

If \(a, b, c \) are real numbers, then
\[
\frac{bc}{3a^2 + b^2 + c^2} + \frac{ca}{3b^2 + c^2 + a^2} + \frac{ab}{3c^2 + a^2 + b^2} \leq \frac{3}{5}.
\]

If \(a, b, c \) are real numbers such that \(a + b + c = 3 \), then
(a) \(\frac{1}{2 + b^2 + c^2} + \frac{1}{2 + c^2 + a^2} + \frac{1}{2 + a^2 + b^2} \leq \frac{3}{4} \);
(b) \(\frac{1}{8 + 5(b^2 + c^2)} + \frac{1}{8 + 5(c^2 + a^2)} + \frac{1}{8 + 5(a^2 + b^2)} \leq \frac{1}{6} \).

If \(a, b, c \) are real numbers, then
\[
\frac{(a + b)(a + c)}{a^2 + 4(b^2 + c^2)} + \frac{(b + c)(b + a)}{b^2 + 4(c^2 + a^2)} + \frac{(c + a)(c + b)}{c^2 + 4(a^2 + b^2)} \leq \frac{4}{3}.
\]
1.133. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\sum \frac{1}{(b + c)(7a + b + c)} \leq \frac{1}{2(ab + bc + ca)}.
\]

1.134. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\sum \frac{1}{b^2 + c^2 + 4a(b + c)} \leq \frac{9}{10(ab + bc + ca)}.
\]

1.135. If \(a, b, c\) are nonnegative real numbers such that \(a + b + c = 3\), then
\[
\frac{1}{3 - ab} + \frac{1}{3 - bc} + \frac{1}{3 - ca} \leq \frac{9}{2(ab + bc + ca)}.
\]

1.136. If \(a, b, c\) are nonnegative real numbers such that \(a + b + c = 3\), then
\[
\frac{bc}{a^2 + a + 6} + \frac{ca}{b^2 + b + 6} + \frac{ab}{c^2 + c + 6} \leq \frac{3}{8}.
\]

1.137. If \(a, b, c\) are nonnegative real numbers such that \(ab + bc + ca = 3\), then
\[
\frac{1}{8a^2 - 2bc + 21} + \frac{1}{8b^2 - 2ca + 21} + \frac{1}{8c^2 - 2ab + 21} \geq \frac{1}{9}.
\]

1.138. Let \(a, b, c\) be real numbers, no two of which are zero. Prove that
\[
\begin{align*}
\text{(a)} & \quad \frac{a^2 + bc}{b^2 + c^2} + \frac{b^2 + ca}{c^2 + a^2} + \frac{c^2 + ab}{a^2 + b^2} \geq \frac{(a + b + c)^2}{a^2 + b^2 + c^2}; \\
\text{(b)} & \quad \frac{a^2 + 3bc}{b^2 + c^2} + \frac{b^2 + 3ca}{c^2 + a^2} + \frac{c^2 + 3ab}{a^2 + b^2} \geq \frac{6(ab + bc + ca)}{a^2 + b^2 + c^2}.
\end{align*}
\]

1.139. Let \(a, b, c\) be real numbers such that \(ab + bc + ca \geq 0\) and no two of which are zero. Prove that
\[
\frac{a(b + c)}{b^2 + c^2} + \frac{b(c + a)}{c^2 + a^2} + \frac{c(a + b)}{a^2 + b^2} \geq \frac{3}{10}.
\]
1.140. If \(a, b, c\) are positive real numbers such that \(abc > 1\), then
\[
\frac{1}{a + b + c - 3} + \frac{1}{abc - 1} \geq \frac{4}{ab + bc + ca - 3}.
\]

1.141. Let \(a, b, c\) be positive real numbers, no two of which are zero. Prove that
\[
\sum \left(\frac{4b^2 - ac}{b + c}\right) \leq \frac{27}{2} abc.
\]

1.142. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero, such that \(a + b + c = 3\).

Prove that
\[
\frac{a}{3a + bc} + \frac{b}{3b + ca} + \frac{c}{3c + ab} \geq \frac{2}{3}.
\]

1.143. Let \(a, b, c\) be positive real numbers such that
\[
(a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = 10.
\]

Prove that
\[
\frac{19}{12} \leq \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \leq \frac{5}{3}.
\]

1.144. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero, such that \(a + b + c = 3\). Prove that
\[
\frac{9}{10} < \frac{a}{2a + bc} + \frac{b}{2b + ca} + \frac{c}{2c + ab} \leq 1.
\]

1.145. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^3}{2a^2 + bc} + \frac{b^3}{2b^2 + ca} + \frac{c^3}{2c^2 + ab} \leq \frac{a^3 + b^3 + c^3}{a^2 + b^2 + c^2}.
\]
1.146. Let \(a, b, c\) be positive real numbers, no two of which are zero. Prove that
\[
\frac{a^3}{4a^2 + bc} + \frac{b^3}{4b^2 + ca} + \frac{c^3}{4c^2 + ab} \geq \frac{a + b + c}{5}.
\]

1.147. If \(a, b, c\) are positive real numbers, then
\[
\frac{1}{(2 + a)^2} + \frac{1}{(2 + b)^2} + \frac{1}{(2 + c)^2} \geq \frac{3}{6 + ab + bc + ca}.
\]

1.148. If \(a, b, c\) are positive real numbers, then
\[
\frac{1}{1 + 3a} + \frac{1}{1 + 3b} + \frac{1}{1 + 3c} \geq \frac{3}{3 + abc}.
\]

1.149. Let \(a, b, c\) be real numbers, no two of which are zero. If \(1 \leq k \leq 3\), then
\[
\left(k + \frac{2ab}{a^2 + b^2}\right)\left(k + \frac{2bc}{b^2 + c^2}\right)\left(k + \frac{2ca}{c^2 + a^2}\right) \geq (k-1)(k^2 - 1).
\]

1.150. If \(a, b, c\) are non-zero and distinct real numbers, then
\[
\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + 3\left[\frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2}\right] \geq 4\left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right).
\]

1.151. Let \(a, b, c\) be positive real numbers, and let
\[
A = \frac{a}{b} + \frac{b}{a} + k, \quad B = \frac{b}{c} + \frac{c}{b} + k, \quad C = \frac{c}{a} + \frac{a}{c} + k,
\]
where \(-2 < k \leq 4\). Prove that
\[
\frac{1}{A} + \frac{1}{B} + \frac{1}{C} \leq \frac{1}{k+2} + \frac{4}{A+B+C-(k+2)}.
\]

1.152. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} + \frac{1}{a^2 + ab + b^2} \geq \frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab}.
\]
1.153. If a, b, c are nonnegative real numbers such that $a + b + c = 3$, then
\[\frac{1}{2ab + 1} + \frac{1}{2bc + 1} + \frac{1}{2ca + 1} \geq \frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2}. \]

1.154. If a, b, c are nonnegative real numbers such that $a + b + c = 4$, then
\[\frac{1}{ab + 2} + \frac{1}{bc + 2} + \frac{1}{ca + 2} \geq \frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2}. \]

1.155. If a, b, c are nonnegative real numbers, no two of which are zero, then
(a) \[\frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{(a - b)^2(b - c)^2(c - a)^2}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)} \leq 1; \]
(b) \[\frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{(a - b)^2(b - c)^2(c - a)^2}{(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2)} \leq 1. \]

1.156. If a, b, c are nonnegative real numbers, no two of which are zero, then
\[\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \geq \frac{45}{8(a^2 + b^2 + c^2) + 2(ab + bc + ca)}. \]

1.157. If a, b, c are real numbers, no two of which are zero, then
\[\frac{a^2 - 7bc}{b^2 + c^2} + \frac{b^2 - 7ca}{a^2 + b^2} + \frac{c^2 - 7ab}{a^2 + b^2} + \frac{9(ab + bc + ca)}{a^2 + b^2 + c^2} \geq 0. \]

1.158. If a, b, c are real numbers such that $abc \neq 0$, then
\[\frac{(b + c)^2}{a^2} + \frac{(c + a)^2}{b^2} + \frac{(a + b)^2}{c^2} \geq 2 + \frac{10(a + b + c)^2}{3(a^2 + b^2 + c^2)}. \]

1.159. If a, b, c are nonnegative real numbers, no two of which are zero, then
\[\frac{a^2 - 4bc}{b^2 + c^2} + \frac{b^2 - 4ca}{a^2 + b^2} + \frac{c^2 - 4ab}{a^2 + b^2} + \frac{9(ab + bc + ca)}{a^2 + b^2 + c^2} \geq \frac{9}{2}. \]
1.160. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{a^2 + b^2 + c^2}{ab + bc + ca} \geq 1 + \frac{9(a - b)^2(b - c)^2(c - a)^2}{(a + b)^2(b + c)^2(c + a)^2}.
\]

1.161. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{a^2 + b^2 + c^2}{ab + bc + ca} \geq 1 + \frac{(a - b)^2(b - c)^2(c - a)^2}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)}.
\]

1.162. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{2}{a + b} + \frac{2}{b + c} + \frac{2}{c + a} \geq \frac{5}{3a + b + c} + \frac{5}{3b + c + a} + \frac{5}{3c + a + b}.
\]

1.163. If \(a, b, c\) are real numbers, no two of which are zero, then
\[
\begin{align*}
(a) \quad & \quad \frac{8a^2 + 3bc}{b^2 + bc + c^2} + \frac{8b^2 + 3ca}{c^2 + ca + a^2} + \frac{8c^2 + 3ab}{a^2 + ab + b^2} \geq 11; \\
(b) \quad & \quad \frac{8a^2 - 5bc}{b^2 - bc + c^2} + \frac{8b^2 - 5ca}{c^2 - ca + a^2} + \frac{8c^2 - 5ab}{a^2 - ab + b^2} \geq 9.
\end{align*}
\]

1.164. If \(a, b, c\) are real numbers, no two of which are zero, then
\[
\frac{4a^2 + bc}{4b^2 + 7bc + 4c^2} + \frac{4b^2 + ca}{4c^2 + 7ca + 4a^2} + \frac{4c^2 + ab}{4a^2 + 7ab + 4b^2} \geq 1.
\]

1.165. If \(a, b, c\) are real numbers, no two of which are equal, then
\[
\frac{1}{(a - b)^2} + \frac{1}{(b - c)^2} + \frac{1}{(c - a)^2} \geq \frac{27}{4(a^2 + b^2 + c^2 - ab - bc - ca)}.
\]

1.166. If \(a, b, c\) are real numbers, no two of which are zero, then
\[
\frac{1}{a^2 - ab + b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} \geq \frac{14}{3(a^2 + b^2 + c^2)}.
\]
1.167. Let \(a, b, c \) be real numbers such that \(ab + bc + ca \geq 0 \) and no two of which are zero. Prove that

(a) \[
\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \geq \frac{3}{2};
\]

(b) if \(ab \leq 0 \), then

\[
\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \geq 2.
\]

1.168. If \(a, b, c \) are nonnegative real numbers, then

\[
\frac{a}{7a+b+c} + \frac{b}{7b+c+a} + \frac{c}{7c+a+b} \geq \frac{ab + bc + ca}{(a+b+c)^2}.
\]

1.169. If \(a, b, c \) are the lengths of the sides of a triangle, then

\[
\frac{a^2}{4a^2 + 5bc} + \frac{b^2}{4b^2 + 5ca} + \frac{c^2}{4c^2 + 5ab} \geq \frac{1}{3}.
\]

1.170. If \(a, b, c \) are the lengths of the sides of a triangle, then

\[
\frac{1}{7a^2 + b^2 + c^2} + \frac{1}{7b^2 + c^2 + a^2} + \frac{1}{7c^2 + a^2 + b^2} \geq \frac{3}{(a+b+c)^2}.
\]

1.171. Let \(a, b, c \) be the lengths of the sides of a triangle. If \(k > -2 \), then

\[
\sum \frac{a(b+c) + (k+1)bc}{b^2 + kbc + c^2} \leq \frac{3(k+3)}{k+2}.
\]

1.172. Let \(a, b, c \) be the lengths of the sides of a triangle. If \(k > -2 \), then

\[
\sum \frac{2a^2 + (4k + 9)bc}{b^2 + kbc + c^2} \leq \frac{3(4k+11)}{k+2}.
\]

1.173. If \(a \geq b \geq c \geq d \) such that \(abcd = 1 \), then

\[
\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \geq \frac{3}{1+\sqrt[3]{abc}}.
\]
1.174. Let a, b, c, d be positive real numbers such that $abcd = 1$. Prove that

$$\sum \frac{1}{1 + ab + bc + ca} \leq 1.$$

1.175. Let a, b, c, d be positive real numbers such that $abcd = 1$. Prove that

$$\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} + \frac{1}{(1+c)^2} + \frac{1}{(1+d)^2} \geq 1.$$

1.176. Let $a, b, c, d \neq \frac{1}{3}$ be positive real numbers such that $abcd = 1$. Prove that

$$\frac{1}{(3a-1)^2} + \frac{1}{(3b-1)^2} + \frac{1}{(3c-1)^2} + \frac{1}{(3d-1)^2} \geq 1.$$

1.177. Let a, b, c, d be positive real numbers such that $abcd = 1$. Prove that

$$\frac{1}{1 + a + a^2 + a^3} + \frac{1}{1 + b + b^2 + b^3} + \frac{1}{1 + c + c^2 + c^3} + \frac{1}{1 + d + d^2 + d^3} \geq 1.$$

1.178. Let a, b, c, d be positive real numbers such that $abcd = 1$. Prove that

$$\frac{1}{1 + a + 2a^2} + \frac{1}{1 + b + 2b^2} + \frac{1}{1 + c + 2c^2} + \frac{1}{1 + d + 2d^2} \geq 1.$$

1.179. Let a, b, c, d be positive real numbers such that $abcd = 1$. Prove that

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{9}{a + b + c + d} \geq \frac{25}{4}.$$

1.180. If a, b, c, d are real numbers such that $a + b + c + d = 0$, then

$$\frac{(a-1)^2}{3a^2 + 1} + \frac{(b-1)^2}{3b^2 + 1} + \frac{(c-1)^2}{3c^2 + 1} + \frac{(d-1)^2}{3d^2 + 1} \leq 4.$$
1.181. If \(a, b, c, d \geq -5\) such that \(a + b + c + d = 4\), then
\[
\frac{1 - a}{(1 + a)^2} + \frac{1 - b}{(1 + b)^2} + \frac{1 - c}{(1 + c)^2} + \frac{1 - d}{(1 + d)^2} \geq 0.
\]

1.182. Let \(a_1, a_2, \ldots, a_n\) be positive real numbers such that \(a_1 + a_2 + \cdots + a_n = n\). Prove that
\[
\sum \frac{1}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2} \leq \frac{1}{2}.
\]

1.183. Let \(a_1, a_2, \ldots, a_n\) be real numbers such that \(a_1 + a_2 + \cdots + a_n = 0\). Prove that
\[
\frac{(a_1 + 1)^2}{a_1^2 + n - 1} + \frac{(a_2 + 1)^2}{a_2^2 + n - 1} + \cdots + \frac{(a_n + 1)^2}{a_n^2 + n - 1} \geq \frac{n}{n-1}.
\]

1.184. Let \(a_1, a_2, \ldots, a_n\) be positive real numbers such that \(a_1a_2 \cdots a_n = 1\). Prove that
\[
\frac{1}{1 + (n-1)a_1} + \frac{1}{1 + (n-1)a_2} + \cdots + \frac{1}{1 + (n-1)a_n} \geq 1.
\]

1.185. Let \(a_1, a_2, \ldots, a_n\) be positive real numbers such that \(a_1a_2 \cdots a_n = 1\). Prove that
\[
\frac{1}{1 - a_1 + na_1^2} + \frac{1}{1 - a_2 + na_2^2} + \cdots + \frac{1}{1 - a_n + na_n^2} \geq 1.
\]

1.186. Let \(a_1, a_2, \ldots, a_n\) be positive real numbers such that
\[
a_1, a_2, \ldots, a_n \geq \frac{k(n-k-1)}{kn-k-1}, \quad k > 1
\]
and
\[
a_1a_2 \cdots a_n = 1.
\]
Prove that
\[
\frac{1}{a_1 + k} + \frac{1}{a_2 + k} + \cdots + \frac{1}{a_n + k} \leq \frac{n}{1 + k}.
\]
1.187. Let a_1, a_2, \ldots, a_n be positive real numbers such that
\[a_1 \geq 1 \geq a_2 \geq \cdots \geq a_n, \quad a_1a_2\cdots a_n = 1. \]
Prove that
\[\frac{1 - a_1}{3 + a_1^2} + \frac{1 - a_2}{3 + a_2^2} + \cdots + \frac{1 - a_n}{3 + a_n^2} \geq 0. \]

1.188. If $a_1, a_2, \ldots, a_n \geq 0$, then
\[\frac{1}{1 + na_1} + \frac{1}{1 + na_2} + \cdots + \frac{1}{1 + na_n} \geq \frac{n}{n + a_1a_2\cdots a_n}. \]

1.189. If a_1, a_2, \ldots, a_n are positive real numbers, then
\[\frac{b_1}{a_1} + \frac{b_2}{a_2} + \cdots + \frac{b_n}{a_n} \geq \frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots + \frac{a_n}{b_n}, \]
where
\[b_i = \frac{1}{n-1} \sum_{j \neq i} a_j, \quad i = 1, 2, \ldots, n. \]

1.190. If a_1, a_2, \ldots, a_n are positive real numbers such that
\[a_1 + a_2 + \cdots + a_n = \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}, \]
then
\begin{align*}
(a) \quad & \frac{1}{1 + (n-1)a_1} + \frac{1}{1 + (n-1)a_2} + \cdots + \frac{1}{1 + (n-1)a_n} \geq 1; \\
(b) \quad & \frac{1}{n-1 + a_1} + \frac{1}{n-1 + a_2} + \cdots + \frac{1}{n-1 + a_n} \leq 1.
\end{align*}
1.2 Solutions

P 1.1. If a, b, c are nonnegative real numbers, then
\[
\frac{a^2 - bc}{3a + b + c} + \frac{b^2 - ca}{3b + c + a} + \frac{c^2 - ab}{3c + a + b} \geq 0.
\]

Solution. We use the SOS method. Without loss of generality, assume that $a \geq b \geq c$. We have
\[
2 \sum \frac{a^2 - bc}{3a + b + c} = \sum \frac{(a - b)(a + c) + (a - c)(a + b)}{3a + b + c}
\]
\[
= \sum \frac{(a - b)(a + c)}{3a + b + c} + \sum \frac{(b - a)(b + c)}{3b + c + a}
\]
\[
= \sum \frac{(a - b)^2(a + b - c)}{(3a + b + c)(3b + c + a)}
\]
Since $a + b - c \geq 0$, it suffices to show that
\[
(b - c)^2(b + c - a)(3a + b + c) + (c - a)^2(c + a - b)(3b + c + a) \geq 0;
\]
that is,
\[
(a - c)^2(c + a - b)(3b + c + a) \geq (b - c)^2(a - b - c)(3a + b + c).
\]
This inequality is trivial for $a \leq b + c$. Otherwise, we can get it by multiplying the obvious inequalities
\[
c + a - b \geq a - b - c,
\]
\[
b^2(a - c)^2 \geq a^2(b - c)^2,
\]
\[
a(3b + c + a) \geq b(3a + b + c),
\]
a \geq b.

The equality holds for $a = b = c$, and for $a = 0$ and $b = c$ (or any cyclic permutation).

P 1.2. If a, b, c are positive real numbers, then
\[
\frac{4a^2 - b^2 - c^2}{a(b + c)} + \frac{4b^2 - c^2 - a^2}{b(c + a)} + \frac{4c^2 - a^2 - b^2}{c(a + b)} \leq 3.
\]

(Vasile Cîrtoaje, 2006)
Solution. We use the SOS method. Write the inequality as follows:

\[
\sum \left[1 - \frac{4a^2 - b^2 - c^2}{a(b + c)} \right] \geq 0, \\
\sum \frac{b^2 + c^2 - 4a^2 + a(b + c)}{a(b + c)} \geq 0, \\
\sum \frac{(b^2 - a^2) + a(b - a) + (c^2 - a^2) + a(c - a)}{a(b + c)} \geq 0, \\
\sum \frac{(b - a)(2a + b) + (c - a)(2a + c)}{a(b + c)} \geq 0, \\
\sum \frac{(b - a)(2a + b) + (a - b)(2b + a)}{b(c + a)} \geq 0, \\
\sum c(a + b)(a - b)^2(bc + ca - ab) \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c \). Since \(ca + ab - bc > 0 \), it suffices to show that

\[
b(c + a)(c - a)^2(ab + bc - ca) + c(a + b)(a - b)^2(bc + ca - ab) \geq 0,
\]

that is,

\[
b(c + a)(c - a)^2(ab + bc - ca) \geq c(a + b)(a - b)^2(ab - bc - ca).
\]

For the nontrivial case \(ab - bc - ca > 0 \), this inequality follows by multiplying the inequalities

\[
ab + bc - ca > ab - bc - ca, \\
(a - c)^2 \geq (a - b)^2, \\
b(c + a) \geq c(a + b).
\]

The equality holds for \(a = b = c \).

P 1.3. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

(a) \[
\frac{1}{a^2 + bc} + \frac{1}{b^2 + ca} + \frac{1}{c^2 + ab} \geq \frac{3}{ab + bc + ca};
\]

(b) \[
\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab} \geq \frac{2}{ab + bc + ca}.
\]

(c) \[
\frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} > \frac{2}{ab + bc + ca}.
\]

(Vasile Cîrtoaje, 2005)
Symmetric Rational Inequalities

Solution. (a) Since
\[\frac{ab + bc + ca}{a^2 + bc} = 1 + \frac{a(b + c - a)}{a^2 + bc}, \]
we can write the inequality as
\[\frac{a(b + c - a)}{a^2 + bc} + \frac{b(c + a - b)}{b^2 + ca} + \frac{c(a + b - c)}{c^2 + ab} \geq 0. \]
Without loss of generality, assume that \(a = \min\{a, b, c\} \). Since \(b + c - a > 0 \), it suffices to show that
\[\frac{b(c + a - b)}{b^2 + ca} + \frac{c(a + b - c)}{c^2 + ab} \geq 0. \]
This is equivalent to each of the following inequalities
\[(b^2 + c^2)a^2 - (b + c)(b^2 - 3bc + c^2)a + bc(b - c)^2 \geq 0, \]
\[(b - c)^2a^2 - (b + c)(b - c)^2a + bc(b - c)^2 + abc(2a + b + c) \geq 0, \]
\[(b - c)^2(a - b)(a - c) + abc(2a + b + c) \geq 0. \]
The last inequality is obviously true. The equality holds for \(a = 0 \) and \(b = c \) (or any cyclic permutation thereof).

(b) According to the identities
\[2a^2 + bc = a(2a - b - c) + ab + bc + ca, \]
\[2b^2 + ca = b(2b - c - a) + ab + bc + ca, \]
\[2c^2 + ab = c(2c - a - b) + ab + bc + ca, \]
we can write the inequality as
\[\frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} \geq 2, \]
where
\[x = \frac{a(2a - b - c)}{ab + bc + ca}, \quad y = \frac{b(2b - c - a)}{ab + bc + ca}, \quad z = \frac{c(2c - a - b)}{ab + bc + ca}. \]
Without loss of generality, assume that \(a = \min\{a, b, c\} \). Since \(x \leq 0 \) and \(\frac{1}{1 + x} \geq 1 \), it suffices to show that
\[\frac{1}{1 + y} + \frac{1}{1 + z} \geq 1. \]
This is equivalent to each of the following inequalities
\[1 \geq yz, \]
\[(ab + bc + ca)^2 \geq bc(2b - c - a)(2c - a - b),\]
\[a^2(b^2 + bc + c^2) + 3abc(b + c) + 2bc(b - c)^2 \geq 0.\]

The last inequality is obviously true. The equality holds for \(a = 0\) and \(b = c\) (or any cyclic permutation thereof).

(c) According to the identities
\[a^2 + 2bc = (a - b)(a - c) + ab + bc + ca,\]
\[b^2 + 2ca = (b - c)(b - a) + ab + bc + ca,\]
\[c^2 + 2ab = (c - a)(c - b) + ab + bc + ca,\]
we can write the inequality as
\[\frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} > 2,\]
where
\[x = \frac{(a - b)(a - c)}{ab + bc + ca}, \quad y = \frac{(b - c)(b - a)}{ab + bc + ca}, \quad z = \frac{(c - a)(c - b)}{ab + bc + ca}.\]

Since
\[xy + yz + zx = 0\]
and
\[xyz = \frac{-(a - b)^2(b - c)^2(c - a)^2}{(ab + bc + ca)^3} \leq 0,\]
we have
\[\frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} - 2 = \frac{1 - 2xyz}{(1 + x)(1 + y)(1 + z)} > 0.\]
\[\square\]

P 1.4. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[\frac{a(b + c)}{a^2 + bc} + \frac{b(c + a)}{b^2 + ca} + \frac{c(a + b)}{c^2 + ab} \geq 2.\]

(Pham Kim Hung, 2006)

Solution. Without loss of generality, assume that \(a \geq b \geq c\) and write the inequality as
\[\frac{b(c + a)}{b^2 + ca} \geq \frac{(a - b)(a - c)}{a^2 + bc} + \frac{(a - c)(b - c)}{c^2 + ab}.\]
Symmetric Rational Inequalities

Since
\[
\frac{(a-b)(a-c)}{a^2 + bc} \leq \frac{(a-b)a}{a^2 + bc} \leq \frac{a-b}{a},
\]
and
\[
\frac{(a-c)(b-c)}{c^2 + ab} \leq \frac{a(b-c)}{c^2 + ab} \leq \frac{b-c}{b},
\]
it suffices to show that
\[
\frac{b(c+a)}{b^2 + ca} \geq \frac{a-b}{a} + \frac{b-c}{b}.
\]
This inequality is equivalent to
\[
b^2(a-b)^2 - 2abc(a-b) + a^2c^2 + ab^2c \geq 0,
\]
\[
(ab-b^2-ac)^2 + ab^2c \geq 0.
\]
The equality holds for for \(a = 0\) and \(b = c\) (or any cyclic permutation).

P 1.5. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\sum \left(\frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} \right) \geq \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}.
\]
(Vasile Cirtoaje, 2002)

Solution. We have
\[
\sum \left(\frac{a^2}{b^2 + c^2} - \frac{a}{b+c} \right) = \sum \frac{ab(a-b) + ac(a-c)}{(b^2 + c^2)(b+c)}
\]
\[
= \sum \frac{ab(a-b)}{(b^2 + c^2)(b+c)} + \sum \frac{ba(b-a)}{(c^2 + a^2)(c+a)}
\]
\[
= (a^2 + b^2 + c^2 + ab + bc + ca) \sum \frac{ab(a-b)^2}{(b^2 + c^2)(c^2 + a^2)(b+c)(c+a)} \geq 0.
\]
The equality holds for \(a = b = c\), and also for \(a = 0\) and \(b = c\) (or any cyclic permutation).

P 1.6. Let \(a, b, c\) be positive real numbers. Prove that
\[
\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \geq \frac{a}{a^2 + bc} + \frac{b}{b^2 + ca} + \frac{c}{c^2 + ab}.
\]
First Solution. Without loss of generality, assume that \(a = \min \{a, b, c\} \). Since
\[
\sum \frac{1}{b + c} - \sum \frac{a}{a^2 + bc} = \sum \left(\frac{1}{b + c} - \frac{a}{a^2 + bc} \right) = \sum \frac{(a - b)(a - c)}{(b + c)(a^2 + bc)}
\]
and \((a - b)(a - c) \geq 0\), it suffices to show that
\[
\frac{(b - c)(b - a)}{(c + a)(b^2 + ca)} + \frac{(c - a)(c - b)}{(a + b)(c^2 + ab)} \geq 0.
\]
This inequality is equivalent to
\[
(b - c)((b^2 - a^2)(c^2 + ab) + (a^2 - c^2)(b^2 + ca)) \geq 0,
\]
\[
a(b - c)^2(b^2 + c^2 - a^2 + ab + bc + ca) \geq 0,
\]
and is clearly true for \(a = \min \{a, b, c\} \). The equality holds for \(a = b = c \).

Second Solution. Since
\[
\sum \frac{1}{b + c} = \sum \left[\frac{b}{(b + c)^2} + \frac{c}{(b + c)^2} \right] = \sum a \left[\frac{1}{(a + b)^2} + \frac{1}{(a + c)^2} \right],
\]
we can write the inequality as
\[
\sum a \left[\frac{1}{(a + b)^2} + \frac{1}{(a + c)^2} - \frac{1}{a^2 + bc} \right] \geq 0.
\]
This is true, since
\[
\frac{1}{(a + b)^2} + \frac{1}{(a + c)^2} - \frac{1}{a^2 + bc} = \frac{bc(b - c)^2 + (a^2 - bc)^2}{(a + b)^2(a + c)^2(a^2 + bc)} \geq 0.
\]
We can also prove this inequality using the Cauchy-Schwarz inequality, as follows
\[
\frac{1}{(a + b)^2} + \frac{1}{(a + c)^2} - \frac{1}{a^2 + bc} \geq \frac{(c + b)^2}{c^2(a + b)^2 + c^2(a + c)^2} \geq \frac{1}{a^2 + bc}
\]
\[
= \frac{bc[2a^2 - 2a(b + c) + b^2 + c^2]}{(a^2 + bc)[c^2(a + b)^2 + b^2(a + c)^2]} \geq \frac{bc[(2a - b - c)^2 + (b - c)^2]}{2(a^2 + bc)[c^2(a + b)^2 + b^2(a + c)^2]} \geq 0.
\]
P 1.7. Let \(a, b, c \) be positive real numbers. Prove that

\[
\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \geq \frac{2a}{3a^2 + bc} + \frac{2b}{3b^2 + ca} + \frac{2c}{3c^2 + ab}.
\]

(Vasile Cîrtoaje, 2005)

Solution. Since

\[
\sum \frac{1}{b+c} - \sum \frac{2a}{3a^2 + bc} = \sum \left(\frac{1}{b+c} - \frac{2a}{3a^2 + bc} \right) = \sum \frac{(a-b)(a-c) + a(2a-b-c)}{(b+c)(3a^2 + bc)},
\]

it suffices to show that

\[
\sum \frac{(a-b)(a-c)}{(b+c)(3a^2 + bc)} \geq 0
\]

and

\[
\sum a(2a-b-c) \geq 0.
\]

In order to prove the first inequality, assume that \(a = \min\{a, b, c\} \). Since

\[
(a-b)(a-c) \geq 0,
\]

it is enough to show that

\[
\frac{(b-c)(b-a)}{(c+a)(3b^2 + ca)} + \frac{(c-a)(c-b)}{(a+b)(3c^2 + ab)} \geq 0.
\]

This is equivalent to the obvious inequality

\[
a(b-c)^2(b^2 + c^2 - a^2 + 3ab + bc + 3ca) \geq 0.
\]

The second inequality is also true, since

\[
\sum \frac{a(2a-b-c)}{(b+c)(3a^2 + bc)} = \sum \frac{a(a-b) + a(a-c)}{(b+c)(3a^2 + bc)}
\]

\[
= \sum \frac{a(a-b)}{(b+c)(3a^2 + bc)} + \sum \frac{b(b-a)}{(a+b)(3b^2 + ca)}
\]

\[
= \sum (a-b) \left[\frac{a}{(b+c)(3a^2 + bc)} - \frac{b}{(c+a)(3b^2 + ca)} \right]
\]

\[
= \sum \frac{c(a-b)^2[(a-b)^2 + c(a+b)]}{(b+c)(c+a)(3a^2 + bc)(3b^2 + ca)} \geq 0.
\]

The equality holds for \(a = b = c \). \qed
P 1.8. Let a, b, c be positive real numbers. Prove that

(a) \[
\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \geq \frac{13}{6} - \frac{2(ab + bc + ca)}{3(a^2 + b^2 + c^2)};
\]

(b) \[
\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} - \frac{3}{2} \geq (\sqrt{3} - 1)\left(1 - \frac{ab + bc + ca}{a^2 + b^2 + c^2}\right).
\]

Solution. (a) We use the SOS method. Rewrite the inequality as

\[
\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} - \frac{3}{2} \geq \frac{2}{3} \left(1 - \frac{ab + bc + ca}{a^2 + b^2 + c^2}\right).
\]

Since

\[
\sum\left(\frac{a}{b+c} - \frac{1}{2}\right) = \sum \left(\frac{a-b}{b+c}\right)
\]

\[
= \sum \left(\frac{a-b}{2(b+c)} + \frac{b-a}{2(c+a)}\right)
\]

\[
= \sum \left(\frac{a-b}{2}\left(\frac{1}{b+c} - \frac{1}{c+a}\right)\right)
\]

\[
= \sum \frac{(a-b)^2}{2(b+c)(c+a)}
\]

and

\[
\frac{2}{3} \left(1 - \frac{ab + bc + ca}{a^2 + b^2 + c^2}\right) = \sum \frac{(a-b)^2}{3(a^2 + b^2 + c^2)},
\]

the inequality can be restated as

\[
\sum(a-b)^2 \left[\frac{1}{2(b+c)(c+a)} - \frac{1}{3(a^2 + b^2 + c^2)}\right] \geq 0.
\]

This is true, since

\[
3(a^2 + b^2 + c^2) - 2(b+c)(c+a) = (a+b-c)^2 + 2(a-b)^2 \geq 0.
\]

The equality holds for $a = b = c$.

(b) Let

\[
p = a + b + c, \quad q = ab + bc + ca, \quad r = abc.
\]

We have

\[
\sum \frac{a}{b+c} = \sum \left(\frac{1}{b+c} + 1\right) - 3 = p \sum \frac{1}{b+c} - 3
\]

\[
= \frac{p(p^2 + q)}{pq - r} - 3.
\]
According to P 2.57-(a) in Volume 1, for fixed \(p \) and \(q \), the product \(r \) is minimal when \(a = 0 \) or \(b = c \). Therefore, it suffices to prove the inequality for \(a = 0 \) and for \(b = c = 1 \).

Case 1: \(a = 0 \). The original inequality can be written as
\[
\frac{b}{c} + \frac{c}{b} - \frac{3}{2} \geq (\sqrt{3} - 1)
\left(1 - \frac{bc}{b^2 + c^2}\right).
\]
It suffices to show that
\[
\frac{b}{c} + \frac{c}{b} - \frac{3}{2} \geq 1 - \frac{bc}{b^2 + c^2}.
\]
Denoting
\[
t = \frac{b^2 + c^2}{bc}, \quad t \geq 2,
\]
this inequality becomes
\[
t - \frac{3}{2} \geq 1 - \frac{1}{t},
\]
\[(t - 2)(2t - 1) \geq 0.
\]

Case 2: \(b = c = 1 \). The original inequality becomes as follows:
\[
\frac{a}{2} + \frac{2}{a + 1} - \frac{3}{2} \geq (\sqrt{3} - 1)
\left(1 - \frac{2a + 1}{a^2 + 2}\right),
\]
\[
\frac{(a - 1)^2}{2(a + 1)} \geq \frac{(\sqrt{3} - 1)(a - 1)^2}{a^2 + 2},
\]
\[(a - 1)^2(1 - \sqrt{3} + 1)^2 \geq 0.
\]
The equality holds for \(a = b = c \), and for \(\frac{a}{\sqrt{3} - 1} = b = c \) (or any cyclic permutation).

\(\square \)

P 1.9. Let \(a, b, c \) be positive real numbers. Prove that
\[
\frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} \leq \left(\frac{a + b + c}{ab + bc + ca}\right)^2.
\]
(\text{Vasile Cirtoaje, 2006})

First Solution. Write the inequality as
\[
\frac{(a + b + c)^2}{ab + bc + ca} - 3 \geq \sum \left(\frac{ab + bc + ca}{a^2 + 2bc} - 1\right),
\]
\[
\frac{(a-b)^2 + (b-c)^2 + (a-b)(b-c)}{ab + bc + ca} + \sum \frac{(a-b)(a-c)}{a^2 + 2bc} \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c\). Since \((a-b)(a-c) \geq 0\) and \((c-a)(c-b) \geq 0\), it suffices to show that
\[
(a-b)^2 + (b-c)^2 + (a-b)(b-c) - \frac{(ab + bc + ca)(a-b)(b-c)}{b^2 + 2ca} \geq 0.
\]

This inequality is equivalent to
\[
(a-b)^2 + (b-c)^2 - \frac{(a-b)^2(b-c)^2}{b^2 + 2ca} \geq 0,
\]
or
\[
(b-c)^2 + \frac{c(a-b)^2(2a + 2b - c)}{b^2 + 2ca} \geq 0,
\]
which is clearly true. The equality holds for \(a = b = c\).

Second Solution. Assume that \(a \geq b \geq c\) and write the desired inequality as
\[
\frac{(a+b+c)^2}{ab + bc + ca} - 3 \geq \sum \left(\frac{ab + bc + ca}{a^2 + 2bc} - 1 \right),
\]
\[
\frac{1}{ab + bc + ca} \sum (a-b)(a-c) + \sum \frac{(a-b)(a-c)}{a^2 + 2bc} \geq 0,
\]
\[
\sum \left(1 + \frac{ab + bc + ca}{a^2 + 2bc} \right) (a-b)(a-c) \geq 0.
\]

Since \((c-a)(c-b) \geq 0\) and \(a-b \geq 0\), it suffices to prove that
\[
\left(1 + \frac{ab + bc + ca}{a^2 + 2bc} \right) (a-c) + \left(1 + \frac{ab + bc + ca}{b^2 + 2ca} \right) (c-b) \geq 0.
\]

Write this inequality as
\[
a-b + (ab + bc + ca) \left(\frac{a-c}{a^2 + 2bc} + \frac{c-b}{b^2 + 2ca} \right) \geq 0,
\]
\[
(a-b) \left[1 + \frac{(ab + bc + ca)(3ac + 3bc - ab - 2c^2)}{(a^2 + 2bc)(b^2 + 2ca)} \right] \geq 0.
\]

Since \(a-b \geq 0\) and \(2ac + 3bc - 2c^2 > 0\), it is enough to show that
\[
1 + \frac{(ab + bc + ca)(ac-ab)}{(a^2 + 2bc)(b^2 + 2ca)} \geq 0.
\]

We have
\[
1 + \frac{(ab + bc + ca)(ac-ab)}{(a^2 + 2bc)(b^2 + 2ca)} \geq 1 + \frac{(ab + bc + ca)(ac-ab)}{a^2(b^2 + ca)}
\]
\[
= \frac{(a+b)c^2 + (a^2 - b^2)c}{a(b^2 + ca)} > 0.
\]

\(\blacksquare\)
P 1.10. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{a^2(b + c)}{b^2 + c^2} + \frac{b^2(c + a)}{c^2 + a^2} + \frac{c^2(a + b)}{a^2 + b^2} \geq a + b + c.
\]

(Darij Grinberg, 2004)

First Solution. We use the SOS method. We have

\[
\sum \frac{a^2(b + c)}{b^2 + c^2} - \sum a = \sum \left[\frac{a^2(b + c)}{b^2 + c^2} - a \right]
\]

\[
= \sum \frac{ab(a - b) + ac(a - c)}{b^2 + c^2}
\]

\[
= \sum \frac{ab(a - b)}{b^2 + c^2} + \sum \frac{ba(b - a)}{c^2 + a^2}
\]

\[
= \sum \frac{ab(a + b)(a - b)^2}{(b^2 + c^2)(c^2 + a^2)} \geq 0.
\]

The equality holds for $a = b = c$, and also for $a = 0$ and $b = c$ (or any cyclic permutation).

Second Solution. By virtue of the Cauchy-Schwarz inequality, we have

\[
\sum a^2(b + c) \geq \left(\sum a \right) \left(\sum a^2(b + c)(b^2 + c^2) \right).
\]

Then, it suffices to show that

\[
\left[\sum a^2(b + c) \right]^2 \geq \left(\sum a \right) \left[\sum a^2(b + c)(b^2 + c^2) \right].
\]

Let $p = a + b + c$ and $q = ab + bc + ca$. Since

\[
\left[\sum a^2(b + c) \right]^2 = (pq - 3abc)^2
\]

\[
= p^2q^2 - 6abcqp + 9a^2b^2c^2
\]

and

\[
\sum a^2(b + c)(b^2 + c^2) = \sum (b + c)[(a^2b^2 + b^2c^2 + c^2a^2) - b^2c^2]
\]

\[
= 2p(a^2b^2 + b^2c^2 + c^2a^2) - \sum b^2c^2(p - a)
\]

\[
= p(a^2b^2 + b^2c^2 + c^2a^2) + abcq = p(q^2 - 2abc) + abcq,
\]

the inequality can be written as

\[
abc(2p^3 + 9abc - 7pq) \geq 0.
\]
Using Schur’s inequality
\[p^3 + 9abc - 4pq \geq 0, \]
we have
\[2p^3 + 9abc - 7pq \geq p(p^2 - 3q) \geq 0. \]
\[
\square
\]

P 1.11. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2 + b^2}{a + b} + \frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} \leq 3\left(\frac{a^2 + b^2 + c^2}{a + b + c}\right).
\]

Solution. We use the SOS method.

First Solution. Multiplying by \(2(a + b + c) \), the inequality successively becomes
\[
\sum \left(1 + \frac{a}{b + c}\right)(b^2 + c^2) \leq 3(a^2 + b^2 + c^2),
\]
\[
\sum \frac{a}{b + c}(b^2 + c^2) \leq \sum a^2,
\]
\[
\sum a\left(a - \frac{b^2 + c^2}{b + c}\right) \geq 0,
\]
\[
\sum \frac{ab(a - b) - ac(c - a)}{b + c} \geq 0,
\]
\[
\sum \frac{ab(a - b) - ba(a - b)}{c + a} \geq 0,
\]
\[
\sum \frac{ab(a - b)^2}{(b + c)(c + a)} \geq 0.
\]
The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. Subtracting \(a + b + c \) from the both sides, the desired inequality becomes as follows:
\[
\frac{3(a^2 + b^2 + c^2)}{a + b + c} - (a + b + c) \geq \sum \left(\frac{a^2 + b^2}{a + b} - \frac{a + b}{2}\right),
\]
\[
\sum \frac{(a - b)^2}{a + b + c} \geq \sum \frac{(a - b)^2}{2(a + b)},
\]
\[
\sum \frac{(a + b - c)(a - b)^2}{a + b} \geq 0.
\]
Without loss of generality, assume that \(a \geq b \geq c \). Since \(a + b - c \geq 0 \), it suffices to prove that
\[
\frac{(a + c - b)(a - c)^2}{a + c} \geq \frac{(a - b - c)(b - c)^2}{b + c}.
\]
This inequality is true because \(a + c - b \geq a - b - c \), \(a - c \geq b - c \) and \(\frac{a - c}{a + c} \geq \frac{b - c}{b + c} \).

Third Solution. Write the inequality as follows
\[
\sum \left[\frac{3(a^2 + b^2)}{2(a + b + c)} - \frac{a^2 + b^2}{a + b} \right] \geq 0,
\]
\[
\sum \frac{(a^2 + b^2)(a + b - 2c)}{a + b} \geq 0,
\]
\[
\sum \frac{(a^2 + b^2)(a - c)}{a + b} + \sum \frac{(a^2 + b^2)(b - c)}{a + b} \geq 0,
\]
\[
\sum \frac{(a^2 + b^2)(a - c)}{a + b} + \sum \frac{(b^2 + c^2)(c - a)}{b + c} \geq 0,
\]
\[
\sum \frac{(a - c)^2(ab + bc + ca - b^2)}{(a + b)(b + c)} \geq 0.
\]
It suffices to prove that
\[
\sum \frac{(a - c)^2(ab + bc - ca - b^2)}{(a + b)(b + c)} \geq 0.
\]
Since \(ab + bc - ca - b^2 = (a - b)(b - c) \), this inequality is equivalent to
\[
(a - b)(b - c)(c - a) \sum \frac{c - a}{(a + b)(b + c)} \geq 0,
\]
which is true because
\[
\sum \frac{c - a}{(a + b)(b + c)} = 0.
\]

P 1.12. Let \(a, b, c \) be positive real numbers. Prove that
\[
\frac{1}{a^2 + ab + b^2} + \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} \geq \frac{9}{(a + b + c)^2}.
\]

(Vasile Cîrtoaje, 2000)
First Solution. Due to homogeneity, we may assume that \(a + b + c = 1 \). Let \(q = ab + bc + ca \). Since
\[
b^2 + bc + c^2 = (a + b + c)^2 - a(a + b + c) - (ab + bc + ca) = 1 - a - q,
\]
we can write the inequality as
\[
\sum \frac{1}{1 - a - q} \geq 9,
\]
\[
9q^3 - 6q^2 - 3q + 1 + 9abc \geq 0.
\]
From Schur’s inequality
\[
(a + b + c)^3 + 9abc \geq 4(a + b + c)(ab + bc + ca),
\]
we get \(1 + 9abc - 4q \geq 0 \). Therefore,
\[
9q^3 - 6q^2 - 3q + 1 + 9abc = (1 + 9abc - 4q) + q(3q - 1)^2 \geq 0.
\]
The equality holds for \(a = b = c \).

Second Solution. Multiplying by \(a^2 + b^2 + c^2 + ab + bc + ca \), the inequality can be written as
\[
(a + b + c) \sum \frac{a}{b^2 + bc + c^2} + \frac{9(ab + bc + ca)}{(a + b + c)^2} \geq 6.
\]
By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{a}{b^2 + bc + c^2} \geq \frac{(a + b + c)^2}{\sum a(b^2 + bc + c^2)} = \frac{a + b + c}{ab + bc + ca}.
\]
Then, it suffices to show that
\[
\frac{(a + b + c)^2}{ab + bc + ca} + \frac{9(ab + bc + ca)}{(a + b + c)^2} \geq 6.
\]
This follows immediately from the AM-GM inequality.

\[\square\]

P 1.13. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2}{(2a + b)(2a + c)} + \frac{b^2}{(2b + c)(2b + a)} + \frac{c^2}{(2c + a)(2c + b)} \leq \frac{1}{3}.
\]

(Tigran Sloyan, 2005)
First Solution. The inequality is equivalent to each of the inequalities

\[
\sum \left[\frac{a^2}{(2a+b)(2a+c)} - \frac{a}{3(2a+b+c)} \right] \leq 0,
\]

\[
\sum \frac{a(a-b)(a-c)}{(2a+b)(2a+c)} \geq 0.
\]

Due to symmetry, we may consider that \(a \geq b \geq c\). Since \(c(c-a)(c-b) \geq 0\), it suffices to prove that

\[
\frac{a(a-b)(a-c)}{(2a+b)(2a+c)} + \frac{b(b-c)(b-a)}{(2b+c)(2b+a)} \geq 0.
\]

This is equivalent to the obvious inequality

\[
(a-b)^2[(a+b)(2ab-c^2) + c(a^2 + b^2 + 5ab)] \geq 0.
\]

The equality holds for \(a = b = c\), and also for \(a = 0\) and \(b = c\) (or any cyclic permutation).

Second Solution (by Vo Quoc Ba Can). Apply the Cauchy-Schwarz inequality in the following manner

\[
\frac{9a^2}{(2a+b)(2a+c)} = \frac{(2a+a)^2}{2a(a+b+c) + (2a^2 + bc)} \leq \frac{2a}{a+b+c} + \frac{a^2}{2a^2 + bc}.
\]

Then,

\[
\sum \frac{9a^2}{(2a+b)(2a+c)} \leq 2 + \sum \frac{a^2}{2a^2 + bc},
\]

and from the known inequality

\[
\sum \frac{a^2}{2a^2 + bc} \leq 1,
\]

the conclusion follows. The last inequality is equivalent to

\[
\sum \frac{bc}{2a^2 + bc} \geq 1,
\]

and can be obtained using the Cauchy-Schwarz inequality, as follows

\[
\sum \frac{bc}{2a^2 + bc} \geq \frac{(\sum bc)^2}{\sum bc(2a^2 + bc)} = 1.
\]

Remark. From the inequality in P 1.13 and Hölder's inequality

\[
\left[\sum \frac{a^2}{(2a+b)(2a+c)} \right] \left[\sum \sqrt{a(2a+b)(2a+c)} \right]^2 \geq (a+b+c)^3,
\]
we get the following result:

- If a, b, c are nonnegative real numbers such that $a + b + c = 3$, then
 \[
 \sqrt{a(2a + b)(2a + c)} + \sqrt{b(2b + c)(2b + a)} + \sqrt{c(2c + a)(2c + bc)} \geq 9,
 \]
 with equality for $a = b = c = 1$, and for $(a, b, c) = (0, \frac{3}{2}, \frac{3}{2})$ or any cyclic permutation.

\[\square \]

P 1.14. Let a, b, c be positive real numbers. Prove that

\[(a) \quad \sum \frac{a}{(2a + b)(2a + c)} \leq \frac{1}{a + b + c};
(b) \quad \sum \frac{a^3}{(2a^2 + b^2)(2a^2 + c^2)} \leq \frac{1}{a + b + c}.
\]

(Vasile Cîrtoaje, 2005)

Solution. (a) Write the inequality as

\[
\sum \left[\frac{1}{3} - \frac{a(a + b + c)}{(2a + b)(2a + c)} \right] \geq 0,
\]

\[
\sum \frac{(a - b)(a - c)}{(2a + b)(2a + c)} \geq 0.
\]

Assume that $a \geq b \geq c$. Since $(a - b)(a - c) \geq 0$, it suffices to prove that

\[
\frac{(b - c)(b - a)}{(2b + c)(2b + a)} + \frac{(a - c)(b - c)}{(2c + a)(2c + b)} \geq 0.
\]

Since $b - c \geq 0$ and $a - c \geq a - b \geq 0$, it is enough to show that

\[
\frac{1}{(2c + a)(2c + b)} \geq \frac{1}{(2b + c)(2b + a)}.
\]

This is equivalent to the obvious inequality

\[(b - c)(a + 4b + 4c) \geq 0.
\]

The equality holds for $a = b = c$.

(b) We obtain the desired inequality by summing the inequalities

\[
\frac{a^3}{(2a^2 + b^2)(2a^2 + c^2)} \geq \frac{a}{(a + b + c)^2}.
\]
Symmetric Rational Inequalities

\[
\frac{b^3}{(2b^2 + c^2)(2b^2 + a^2)} \geq \frac{b}{(a + b + c)^2},
\]

\[
\frac{c^3}{(2c^2 + a^2)(2c^2 + b^2)} \geq \frac{c}{(a + b + c)^2},
\]

which are consequences of the Cauchy-Schwarz inequality. For example, from\[
(a^2 + a^2 + b^2)(c^2 + a^2 + a^2) \geq (ac + a^2 + ba)^2,
\]
the first inequality follows. The equality holds for \(a = b = c\).

\[\Box\]

P 1.15. If \(a, b, c\) are positive real numbers, then

\[
\sum \frac{1}{(a + 2b)(a + 2c)} \geq \frac{1}{(a + b + c)^2} + \frac{2}{3(ab + bc + ca)}.
\]

Solution. Write the inequality as follows

\[
\sum \left[\frac{1}{(a + 2b)(a + 2c)} - \frac{1}{(a + b + c)^2} \right] \geq \frac{2}{3(ab + bc + ca)} - \frac{2}{(a + b + c)^2},
\]

\[
\sum \frac{(b - c)^2}{(a + 2b)(a + 2c)} \geq \sum \frac{(b - c)^2}{3(ab + bc + ca)},
\]

\[(a - b)(b - c)(c - a) \sum \frac{b - c}{(a + 2b)(a + 2c)} \geq 0.
\]

Since

\[
\sum \frac{b - c}{(a + 2b)(a + 2c)} = \sum \left[\frac{b - c}{(a + 2b)(a + 2c)} - \frac{b - c}{3(ab + bc + ca)} \right] = \frac{(a - b)(b - c)(c - a)}{3(ab + bc + ca)} \sum \frac{1}{(a + 2b)(a + 2c)},
\]

the desired inequality is equivalent to the obvious inequality

\[(a - b)^2(b - c)^2(c - a)^2 \sum \frac{1}{(a + 2b)(a + 2c)} \geq 0.
\]

The equality holds for \(a = b\), or \(b = c\), or \(c = a\).

\[\Box\]
P 1.16. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

(a) \[
\frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2} \geq \frac{4}{ab + bc + ca};
\]

(b) \[
\frac{1}{a^2 - ab + b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} \geq \frac{3}{ab + bc + ca};
\]

(c) \[
\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \geq \frac{5}{2(ab + bc + ca)}.
\]

Solution. Let

\[
E_k(a, b, c) = \frac{ab + bc + ca}{a^2 - kab + b^2} + \frac{ab + bc + ca}{b^2 - kbc + c^2} + \frac{ab + bc + ca}{c^2 - kca + a^2}.
\]

We will prove that

\[
E_k(a, b, c) \geq \alpha_k,
\]

where

\[
\alpha_k = \begin{cases}
5 - 2k, & 0 \leq k \leq 1 \\
2 - k, & 1 \leq k \leq 2 \\
\end{cases}
\]

To show this, assume that \(a \leq b \leq c\) and prove that

\[
E_k(a, b, c) \geq E_k(0, b, c) \geq \alpha_k.
\]

For the nontrivial case \(a > 0\), the left inequality is true because

\[
\frac{E_k(a, b, c) - E_k(0, b, c)}{a} = \frac{b^2 + (1+k)bc - ac}{b(a^2 - kab + b^2)} + \frac{b + c}{b^2 - kbc + c^2} + \frac{c^2 + (1+k)bc - ab}{c(c^2 - kca + a^2)}
\]

\[
> \frac{bc - ac}{b(a^2 - kab + b^2)} + \frac{b + c}{b^2 - kbc + c^2} + \frac{bc - ab}{c(c^2 - kca + a^2)} > 0.
\]

In order to prove the right inequality \(E_k(0, b, c) \geq \alpha_k\), where

\[
E_k(0, b, c) = \frac{bc}{b^2 - kbc + c^2} + \frac{b + c}{bc} + \frac{c}{b},
\]

by virtue of the AM-GM inequality, we have

\[
E_k(0, b, c) = \frac{bc}{b^2 - kbc + c^2} + \frac{b^2 - kbc + c^2}{bc} + k \geq 2 + k.
\]
Thus, it remains to consider the case $0 \leq k \leq 1$. We have

$$E_k(0, b, c) = \frac{bc}{b^2 - kbc + c^2} + \frac{b^2 - kbc + c^2}{(2 - k)^2 bc} + \left[1 - \frac{1}{(2 - k)^2}\right] \left(\frac{c}{b} + \frac{b}{c}\right) + \frac{k}{(2 - k)^2} \geq \frac{2}{2 - k} + 2 \left[1 - \frac{1}{(2 - k)^2}\right] + \frac{k}{(2 - k)^2} = \frac{5 - 2k}{2 - k}.$$

For $1 \leq k \leq 2$, the equality holds when $a = 0$ and $\frac{b}{c} + \frac{c}{b} = 1 + k$ (or any cyclic permutation). For $0 \leq k \leq 1$, the equality holds when $a = 0$ and $b = c$ (or any cyclic permutation).

\[\square\]

P 1.17. Let a, b, c be positive real numbers, no two of which are zero. Prove that

$$\frac{(a^2 + b^2)(a^2 + c^2)}{(a + b)(a + c)} + \frac{(b^2 + c^2)(b^2 + a^2)}{(b + c)(b + a)} + \frac{(c^2 + a^2)(c^2 + b^2)}{(c + a)(c + b)} \geq a^2 + b^2 + c^2.$$

(Vasile Cîrtoaje, 2011)

Solution. Using the identity

$$(a^2 + b^2)(a^2 + c^2) = a^2(a^2 + b^2 + c^2) + b^2c^2,$$

we can write the inequality as follows

$$\sum \frac{b^2c^2}{(a + b)(a + c)} \geq (a^2 + b^2 + c^2) \left[1 - \sum \frac{a^2}{(a + b)(a + c)}\right],$$

$$\sum b^2c^2(b + c) \geq 2abc(a^2 + b^2 + c^2),$$

$$\sum a^3(b^2 + c^2) \geq 2 \sum a^3bc,$$

$$\sum a^3(b - c)^2 \geq 0.$$

Since the last form is obvious, the proof is completed. The equality holds for $a = b = c$.

\[\square\]

P 1.18. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{1}{a^2 + b + c} + \frac{1}{b^2 + c + a} + \frac{1}{c^2 + a + b} \leq 1.$$
First Solution. By virtue of the Cauchy-Schwarz inequality, we have

\[(a^2 + b + c)(1 + b + c) \geq (a + b + c)^2.\]

Therefore,

\[\sum \frac{1}{a^2 + b + c} \leq \sum \frac{1 + b + c}{(a + b + c)^2} = \frac{3 + 2(a + b + c)}{(a + b + c)^2} = 1.\]

The equality occurs for \(a = b = c = 1.\)

Second Solution. Rewrite the inequality as

\[\frac{1}{a^2 - a + 3} + \frac{1}{b^2 - b + 3} + \frac{1}{c^2 - c + 3} \leq 1.\]

We see that the equality holds for \(a = b = c = 1.\) Thus, if there exists a real number \(k\) such that

\[\frac{1}{a^2 - a + 3} \leq k + \left(\frac{1}{3} - k\right)a\]

for all \(a \in [0,3],\) then

\[\sum \frac{1}{a^2 - a + 3} \leq \sum \left[k + \left(\frac{1}{3} - k\right)a\right] = 3k + \left(\frac{1}{3} - k\right)\sum a = 1.\]

We have

\[k + \left(\frac{1}{3} - k\right)a - \frac{1}{a^2 - a + 3} = \frac{(a - 1)[(1 - 3k)a^2 + 3ka + 3(1 - 3k)]}{3(a^2 - a + 3)}.\]

Setting \(k = 4/9,\) we get

\[k + \left(\frac{1}{3} - k\right)a - \frac{1}{a^2 - a + 3} = \frac{(a - 1)^2(3 - a)}{9(a^2 - a + 3)} \geq 0.\]

\(\Box\)

P 1.19. Let \(a, b, c\) be real numbers such that \(a + b + c = 3.\) Prove that

\[\frac{a^2 - bc}{a^2 + 3} + \frac{b^2 - ca}{b^2 + 3} + \frac{c^2 - ab}{c^2 + 3} \geq 0.\]

(Vasile Cirtoaje, 2005)
Solution. Apply the SOS method. We have

\[
2 \sum \frac{a^2 - bc}{a^2 + 3} = \sum \frac{(a - b)(a + c) + (a - c)(a + b)}{a^2 + 3} = \sum \frac{(a - b)(a + c)}{a^2 + 3} + \sum \frac{(b - a)(b + c)}{b^2 + 3} = \sum (a - b) \left(\frac{a + c}{a^2 + 3} - \frac{b + c}{b^2 + 3} \right) = (3 - ab - bc - ca) \sum \frac{(a - b)^2}{(a^2 + 3)(b^2 + 3)} \geq 0.
\]

Thus, it suffices to show that \(3 - ab - bc - ca \geq 0\). This follows immediately from the known inequality \((a + b + c)^2 \geq 3(ab + bc + ca)\), which is equivalent to \((a - b)^2 + (b - c)^2 + (c - a)^2 \geq 0\). The equality holds for \(a = b = c = 1\).

P 1.20. Let \(a, b, c\) be nonnegative real numbers such that \(a + b + c = 3\). Prove that

\[
\frac{1 - bc}{5 + 2a} + \frac{1 - ca}{5 + 2b} + \frac{1 - ab}{5 + 2c} \geq 0.
\]

Solution. Since

\[
9(1 - bc) = (a + b + c)^2 - 9bc,
\]

we can write the inequality as

\[
\sum \frac{a^2 + b^2 + c^2 + 2a(b + c) - 7bc}{5 + 2a} \geq 0.
\]

From

\[
(a - b)(a + kb + mc) + (a - c)(a + kc + mb) = 2a^2 - k(b^2 + c^2) + (k + m - 1)a(b + c) - 2mbc,
\]

choosing \(k = -2\) and \(m = 7\), we get

\[
(a - b)(a - 2b + 7c) + (a - c)(a - 2c + 7b) = 2[a^2 + b^2 + c^2 + 2a(b + c) - 7bc].
\]

Therefore, the desired inequality becomes as follows:

\[
\sum \frac{(a - b)(a - 2b + 7c)}{5 + 2a} + \sum \frac{(a - c)(a - 2c + 7b)}{5 + 2a} \geq 0,
\]

\[
\sum \frac{(a - b)(a - 2b + 7c)}{5 + 2a} + \sum \frac{(b - a)(b - 2a + 7c)}{5 + 2b} \geq 0,
\]
\[
\begin{align*}
\sum (a-b)(5+2c)[(5+2b)(a-2b+7c)-(5+2a)(b-2a+7c)] & \geq 0, \\
\sum (a-b)^2(5+2c)(15+4a+4b-14c) & \geq 0, \\
\sum (a-b)^2(5+2c)(a+b-c) & \geq 0.
\end{align*}
\]

Without loss of generality, assume that \(a \geq b \geq c\). Clearly, it suffices to show that
\[
(a-c)^2(5+2b)(a+c-b) \geq (b-c)^2(5+2a)(a-b-c).
\]
Since \(a-c \geq b-c \geq 0\) and \(a+c-b \geq a-b-c\), it suffices to prove that
\[
(a-c)(5+2b) \geq (b-c)(5+2a).
\]
Indeed,
\[
(a-c)(5+2b)-(b-c)(5+2a) = (a-b)(5+2c) \geq 0.
\]
The equality holds for \(a = b = c = 1\), and for \(c = 0\) and \(a = b = 3/2\) (or any cyclic permutation).

P 1.21. Let \(a, b, c\) be positive real numbers such that \(a + b + c = 3\). Prove that
\[
\frac{1}{a^2 + b^2 + 2} + \frac{1}{b^2 + c^2 + 2} + \frac{1}{c^2 + a^2 + 2} \leq \frac{3}{4}.
\]

\(\text{(Vasile Cirtoaje, 2006)}\)

Solution. Since
\[
\frac{1}{a^2 + b^2 + 2} = \frac{1}{2} - \frac{a^2 + b^2}{a^2 + b^2 + 2},
\]
we write the inequality as
\[
\frac{a^2 + b^2}{a^2 + b^2 + 2} + \frac{b^2 + c^2}{b^2 + c^2 + 2} + \frac{c^2 + a^2}{c^2 + a^2 + 2} \geq \frac{3}{2}.
\]
By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{a^2 + b^2}{a^2 + b^2 + 2} \geq \frac{(\sum \sqrt{a^2 + b^2})^2}{\sum (a^2 + b^2 + 2)} = \frac{2\sum a^2 + 2\sum \sqrt{(a^2 + b^2)(a^2 + c^2)}}{2\sum a^2 + 6} \geq \frac{2\sum a^2 + 2\sum (a^2 + bc)}{2\sum a^2 + 6} = \frac{3\sum a^2 + 9}{2\sum a^2 + 6} = \frac{3}{2}.
\]
The equality holds for \(a = b = c = 1\)
P 1.22. Let a, b, c be positive real numbers such that $a + b + c = 3$. Prove that

$$\frac{1}{4a^2 + b^2 + c^2} + \frac{1}{4b^2 + c^2 + a^2} + \frac{1}{4c^2 + a^2 + b^2} \leq \frac{1}{2}. \quad \text{(Vasile Cirtoaje, 2007)}$$

Solution. According to the Cauchy-Schwarz inequality, we have

$$\frac{9}{4a^2 + b^2 + c^2} = \frac{(a + b + c)^2}{2a^2 + (a^2 + b^2) + (a^2 + c^2)} \leq \frac{1}{2 + \frac{b^2}{a^2 + b^2} + \frac{c^2}{a^2 + c^2}}.$$

Therefore,

$$\sum \frac{9}{4a^2 + b^2 + c^2} \leq \frac{3}{2} + \sum \left(\frac{b^2}{a^2 + b^2} + \frac{c^2}{a^2 + c^2} \right) = \frac{3}{2} + \sum \left(\frac{b^2}{a^2 + b^2} + \frac{a^2}{b^2 + a^2} \right) = \frac{3}{2} + 3 = \frac{9}{2}.$$

The equality holds for $a = b = c = 1$.

\[\square\]

P 1.23. Let a, b, c be nonnegative real numbers such that $a + b + c = 2$. Prove that

$$\frac{bc}{a^2 + 1} + \frac{ca}{b^2 + 1} + \frac{ab}{c^2 + 1} \leq 1. \quad \text{(Pham Kim Hung, 2005)}$$

Solution. Let $p = a + b + c$ and $q = ab + bc + ca$, $q \leq p^2/3 = 4/3$. If one of a, b, c is zero, then the inequality is true. Otherwise, write the inequality as

$$\sum \frac{1}{a(a^2 + 1)} \leq \frac{1}{abc},$$

$$\sum \left(\frac{1}{a} - \frac{a}{a^2 + 1} \right) \leq \frac{1}{abc},$$

$$\sum \frac{a}{a^2 + 1} \geq \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{abc},$$

$$\sum \frac{a}{a^2 + 1} \geq \frac{q - 1}{abc},$$
Using the inequality
\[\frac{2}{a^2 + 1} \geq 2 - a, \]
which is equivalent to \(a(a - 1)^2 \geq 0 \), we get
\[\sum \frac{a}{a^2 + 1} \geq \sum \frac{a(2 - a)}{2} = \sum \frac{a(b + c)}{2} = q. \]

Therefore, it suffices to prove that
\[1 + abcq \geq q. \]

Since
\[
\begin{align*}
 a^4 + b^4 + c^4 &= (a^2 + b^2 + c^2)^2 - 2(a^2b^2 + b^2c^2 + c^2a^2) \\
 &= (p^2 - 2q)^2 - 2(q^2 - 2abcp) = p^4 - 4p^2q + 2q^2 + 4abcp
\end{align*}
\]
by Schur’s inequality of degree four
\[a^4 + b^4 + c^4 + 2abc(a + b + c) \geq (ab + bc + ca)(a^2 + b^2 + c^2), \]
we get
\[abc \geq \frac{(p^2 - q)(4q - p^2)}{6p}, \]
\[abc \geq \frac{(4 - q)(q - 1)}{3}. \]

Thus
\[1 + abcq - q \geq 1 + \frac{q(4 - q)(q - 1)}{3} - q = \frac{(3 - q)(q - 1)^2}{3} \geq 0. \]
The equality holds if \(a = 0 \) and \(b = c = 1 \) (or any cyclic permutation).

\[\square \]

P 1.24. Let \(a, b, c \) be nonnegative real numbers such that \(a + b + c = 1 \). Prove that
\[\frac{bc}{a + 1} + \frac{ca}{b + 1} + \frac{ab}{c + 1} \leq \frac{1}{4}. \]

\[(Vasile Cirtoaje, 2009)\]
Symmetric Rational Inequalities

First Solution. We have
\[
\sum_{cyc} \frac{bc}{a+1} = \sum_{cyc} \frac{bc}{(a+b)+(c+a)} \\
\leq \frac{1}{4} \sum_{cyc} bc \left(\frac{1}{a+b} + \frac{1}{c+a} \right) \\
= \frac{1}{4} \sum_{cyc} bc + \frac{1}{4} \sum_{cyc} bc \\
= \frac{1}{4} \sum_{cyc} \frac{bc}{a+b} + \frac{1}{4} \sum_{cyc} \frac{ca}{a+b} \\
= \frac{1}{4} \sum_{cyc} \frac{bc+ca}{a+b} = \frac{1}{4} \sum_{cyc} c = \frac{1}{4}.
\]
The equality holds for \(a = b = c = 1/3\), and for \(a = 0\) and \(b = c = 1/2\) (or any cyclic permutation).

Second Solution. It is easy to check that the inequality is true if one of \(a, b, c\) is zero. Otherwise, write the inequality as
\[
\frac{1}{a(a+1)} + \frac{1}{b(b+1)} + \frac{1}{c(c+1)} \leq \frac{1}{4abc}.
\]
Since
\[
\frac{1}{a(a+1)} = \frac{1}{a} - \frac{1}{a+1},
\]
we can write the required inequality as
\[
\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} \geq \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{4abc}.
\]
In virtue of the Cauchy-Schwarz inequality,
\[
\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} \geq \frac{9}{(a+1)+(b+1)+(c+1)} = \frac{9}{4}.
\]
Therefore, it suffices to prove that
\[
\frac{9}{4} \geq \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{1}{4abc}.
\]
This is equivalent to Schur’s inequality
\[
(a + b + c)^3 + 9abc \geq 4(a + b + c)(ab + bc + ca).
\]
P 1.25. Let \(a, b, c \) be positive real numbers such that \(a + b + c = 1 \). Prove that
\[
\frac{1}{a(2a^2 + 1)} + \frac{1}{b(2b^2 + 1)} + \frac{1}{c(2c^2 + 1)} \leq \frac{3}{11abc}.
\]
(Vasile Cîrtoaje, 2009)

Solution. Since
\[
\frac{1}{a(2a^2 + 1)} = \frac{1}{a} - \frac{2a}{2a^2 + 1},
\]
we can write the inequality as
\[
\sum \frac{2a}{2a^2 + 1} \geq \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{3}{11abc}.
\]
By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{2a}{2a^2 + 1} \geq \frac{2(\sum a)^2}{\sum a(2a^2 + 1)} = \frac{2}{2(a^3 + b^3 + c^3) + 1}.
\]
Therefore, it suffices to show that
\[
\frac{2}{2(a^3 + b^3 + c^3) + 1} \geq \frac{11q - 3}{11abc},
\]
where \(q = ab + bc + ca, q \leq \frac{1}{3}(a + b + c)^2 = \frac{1}{3} \). Since
\[
a^3 + b^3 + c^3 = 3abc + (a + b + c)^3 - 3(a + b + c)(ab + bc + ca) = 3abc + 1 - 3q,
\]
we need to prove that
\[
22abc \geq (11q - 3)(6abc + 3 - 6q),
\]
or, equivalently,
\[
2(20 - 33q)abc \geq 3(11q - 3)(1 - 2q).
\]
From Schur’s inequality
\[
(a + b + c)^3 + 9abc \geq 4(a + b + c)(ab + bc + ca),
\]
we get
\[
9abc \geq 4q - 1.
\]
Thus,
\[
2(20 - 33q)abc - 3(11q - 3)(1 - 2q) \geq
\]
\[
\geq \frac{2(20 - 33q)(4q - 1)}{9} - 3(11q - 3)(1 - 2q)
\]
\[
= \frac{330q^2 - 233q + 41}{9} = \frac{(1 - 3q)(41 - 110q)}{9} \geq 0.
\]
This completes the proof. The equality holds for \(a = b = c = 1/3 \). \(\Box \)
P 1.26. Let \(a, b, c \) be positive real numbers such that \(a + b + c = 3 \). Prove that

\[
\frac{1}{a^3 + b + c} + \frac{1}{b^3 + c + a} + \frac{1}{c^3 + a + b} \leq 1.
\]

\textit{(Vasile Cirtoaje, 2009)}

\textbf{Solution.} Write the inequality in the form

\[
\frac{1}{a^3 - a + 3} + \frac{1}{b^3 - b + 3} + \frac{1}{c^3 - c + 3} \leq 1.
\]

Assume that \(a \geq b \geq c \). There are two cases to consider.

\textit{Case 1:} \(c \leq b \leq a \leq 2 \). The desired inequality follows by adding the inequalities

\[
\frac{1}{a^3 - a + 3} \leq \frac{5 - 2a}{9}, \quad \frac{1}{b^3 - b + 3} \leq \frac{5 - 2b}{9}, \quad \frac{1}{c^3 - c + 3} \leq \frac{5 - 2c}{9}.
\]

Indeed, we have

\[
\frac{1}{a^3 - a + 3} - \frac{5 - 2a}{9} = \frac{(a - 1)^2(a - 2)(2a + 3)}{9(a^3 - a + 3)} \leq 0.
\]

\textit{Case 2:} \(a > 2 \). From \(a + b + c = 3 \), we get \(b + c < 1 \). Since

\[
\sum a^3 - a + 3 < \frac{1}{a^3 - a + 3} + \frac{1}{3 - b} + \frac{1}{3 - c} < \frac{1}{9} + \frac{1}{3 - b} + \frac{1}{3 - c},
\]

it suffices to prove that

\[
\frac{1}{3 - b} + \frac{1}{3 - c} \leq \frac{8}{9}.
\]

We have

\[
\frac{1}{3 - b} + \frac{1}{3 - c} - \frac{8}{9} = \frac{3 - (1 - b - c) - 8bc}{9(3 - b)(3 - c)} < 0.
\]

The equality holds for \(a = b = c = 1 \).

\textbf{P 1.27.} Let \(a, b, c \) be positive real numbers such that \(a + b + c = 3 \). Prove that

\[
\frac{a^2}{1 + b^3 + c^3} + \frac{b^2}{1 + c^3 + a^3} + \frac{c^2}{1 + a^3 + b^3} \geq 1.
\]
Solution. Using the Cauchy-Schwarz inequality, we have

\[
\sum \frac{a^2}{1 + b^3 + c^3} \geq \frac{(\sum a^2)^2}{\sum a^2 (1 + b^3 + c^3)},
\]

and it remains to show that

\[
(a^2 + b^2 + c^2)^2 \geq (a^2 + b^2 + c^2) + \sum a^2 b^2 (a + b).
\]

Let \(p = a + b + c \) and \(q = ab + bc + ca, q \leq 3 \). Since \(a^2 + b^2 + c^2 = 9 - 2q \) and

\[
\sum a^2 b^2 (a + b) = 3 \sum a^2 b^2 - q abc = 3q^2 -(q + 18)abc,
\]

the desired inequality can be written as

\[
q^2 - 34q + 72 + (q + 18)abc \geq 0.
\]

This inequality is clearly true for \(q \leq 2 \). Consider further that \(2 < q \leq 3 \). Since

\[
a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 - 2(a^2 b^2 + b^2 c^2 + c^2 a^2)
\]

\[
= (p^2 - 2q^2)^2 - 2(q^2 - 2abc) = p^4 - 4p^2 q + 4q^2 + 4abc
\]

by Schur's inequality of degree four

\[
a^4 + b^4 + c^4 + 2abc(a + b + c) \geq (ab + bc + ca)(a^2 + b^2 + c^2),
\]

we get

\[
abc \geq \frac{(p^2 - q)(4q - p^2)}{6p} = \frac{(9 - q)(4q - 9)}{18}.
\]

Therefore

\[
q^2 - 34q + 72 + (q + 18)abc \geq q^2 - 34q + 72 + \frac{(q + 18)(9 - q)(4q - 9)}{18}
\]

\[
= \frac{(3 - q)(4q^2 + 21q - 54)}{18} \geq 0.
\]

The equality holds for \(a = b = c = 1 \).

\[\square \]

P 1.28. Let \(a, b, c \) be nonnegative real numbers such that \(a + b + c = 3 \). Prove that

\[
\frac{1}{6 - ab} + \frac{1}{6 - bc} + \frac{1}{6 - ca} \leq \frac{3}{5}.
\]
Solution. Rewrite the inequality as

\[
108 - 48(ab + bc + ca) + 13abc(a + b + c) - 3a^2 b^2 c^2 \geq 0,
\]

\[
4[9 - 4(ab + bc + ca) + 3abc] + abc(1 - abc) \geq 0.
\]

By the AM-GM inequality,

\[
1 = \left(\frac{a + b + c}{3}\right)^3 \geq abc.
\]

Consequently, it suffices to show that

\[
9 - 4(ab + bc + ca) + 3abc \geq 0.
\]

We see that the homogeneous form of this inequality is just Schur’s inequality of third degree

\[
(a + b + c)^3 + 9abc \geq 4(a + b + c)(ab + bc + ca).
\]

The equality holds for \(a = b = c = 1\), as well as for \(a = 0\) and \(b = c = 3/2\) (or any cyclic permutation).

\[
\square
\]

P 1.29. Let \(a, b, c\) be nonnegative real numbers such that \(a + b + c = 3\). Prove that

\[
\frac{1}{2a^2 + 7} + \frac{1}{2b^2 + 7} + \frac{1}{2c^2 + 7} \leq \frac{1}{3}.
\]

(Vasile Cîrtoaje, 2005)

Solution. Assume that \(a = \max\{a, b, c\}\) and prove that

\[
E(a, b, c) \leq E(a, s, s) \leq \frac{1}{3},
\]

where

\[
s = \frac{b + c}{2}, \quad 0 \leq s \leq 1,
\]

and

\[
E(a, b, c) = \frac{1}{2a^2 + 7} + \frac{1}{2b^2 + 7} + \frac{1}{2c^2 + 7}.
\]

We have

\[
E(a, s, s) - E(a, b, c) = \left(\frac{1}{2s^2 + 7} - \frac{1}{2b^2 + 7}\right) + \left(\frac{1}{2s^2 + 7} - \frac{1}{2c^2 + 7}\right)
\]

\[
= \frac{1}{2s^2 + 7} \left(\frac{(b - c)(b + s)}{2b^2 + 7} + \frac{(c - b)(c + s)}{2c^2 + 7}\right)
\]

\[
= \frac{(b - c)^2 (7 - 4s^2 - 2bc)}{(2s^2 + 7)(2b^2 + 7)(2c^2 + 7)}.
\]
Since $bc \leq s^2 \leq 1$, it follows that $7 - 4s^2 - 2bc > 0$, and hence $E(a, s, s) \geq E(a, b, c)$. Also,

$$
\frac{1}{3} - E(a, s, s) = \frac{1}{3} - E(3 - 2s, s, s) = \frac{4(s-1)^2(2s-1)^2}{3(2a^2 + 7)(2s^2 + 7)} \geq 0.
$$

The equality holds for $a = b = c = 1$, as well as for $a = 2$ and $b = c = 1/2$ (or any cyclic permutation).

\[\square\]

P 1.30. Let a, b, c be nonnegative real numbers such that $a \geq b \geq c$ and $a + b + c = 3$. Prove that

$$
\frac{1}{a^2 + 3} + \frac{1}{b^2 + 3} + \frac{1}{c^2 + 3} \leq \frac{3}{4}.
$$

(Vasile Cîrtoaje, 2005)

First Solution (by Nguyen Van Quy). Write the inequality as follows:

$$
\left(\frac{1}{a^2 + 3} - \frac{3-a}{8}\right) + \left(\frac{1}{b^2 + 3} - \frac{3-b}{8}\right) \leq \left(\frac{3-c}{8} - \frac{1}{c^2 + 3}\right),
$$

$$
\frac{(a-1)^3}{a^2 + 3} + \frac{(b-1)^3}{b^2 + 3} \leq \frac{(1-c)^3}{c^2 + 3}.
$$

Indeed, we have

$$
\frac{(1-c)^3}{c^2 + 3} = \frac{(a-1+b-1)^3}{c^2 + 3} \geq \frac{(a-1)^3 + (b-1)^3}{c^2 + 3} \geq \frac{(a-1)^3}{a^2 + 3} + \frac{(b-1)^3}{b^2 + 3}.
$$

The proof is completed. The equality holds for $a = b = c = 1$.

Second Solution. Let d be a positive number such that

$$
c + d = 2.
$$

We have

$$
a + b = 1 + d, \quad d \geq a \geq b \geq 1.
$$

In addition, we claim that

$$
\frac{1}{c^2 + 3} + \frac{1}{d^2 + 3} \leq \frac{1}{2}.
$$

Indeed,

$$
\frac{1}{2} - \frac{1}{c^2 + 3} - \frac{1}{d^2 + 3} = \frac{(cd-1)^2}{2(c^2 + 3)(d^2 + 3)} \geq 0.
$$

Thus, it suffices to show that

$$
\frac{1}{a^2 + 3} + \frac{1}{b^2 + 3} \leq \frac{1}{d^2 + 3} + \frac{1}{4}.
$$
Since
\[
\frac{1}{a^2 + 3} - \frac{1}{d^2 + 3} = \frac{(d-a)(d+a)}{(a^2 + 3)(d^2 + 3)}, \quad \frac{1}{4} - \frac{1}{b^2 + 3} = \frac{(b-1)(b+1)}{4(b^2 + 3)},
\]
we need to prove that
\[
\frac{d + a}{(a^2 + 3)(d^2 + 3)} \leq \frac{b + 1}{4(b^2 + 3)}.
\]
We can get this inequality by multiplying the inequalities
\[
\frac{d + a}{d^2 + 3} \leq \frac{a + 1}{4},
\]
\[
a + 1 \leq \frac{b + 1}{b^2 + 3}.
\]
We have
\[
\frac{a + 1}{4} - \frac{d + a}{d^2 + 3} = \frac{(d-1)(ad + a + d - 3)}{4(d^2 + 3)} \geq 0,
\]
\[
b + 1 - \frac{a + 1}{b^2 + 3} = \frac{(a-b)(ab + a + b - 3)}{(a^2 + 3)(b^2 + 3)} \geq 0.
\]

\[\square\]

P 1.31. Let \(a, b, c\) be nonnegative real numbers such that \(a + b + c = 3\). Prove that
\[
\frac{1}{2a^2 + 3} + \frac{1}{2b^2 + 3} + \frac{1}{2c^2 + 3} \geq \frac{3}{5}.
\]

(Vasile Cîrtoaje, 2005)

First Solution (by Nguyen Van Quy). Write the inequality as
\[
\sum \left(\frac{1}{3} - \frac{1}{2a^2 + 3}\right) \leq \frac{2}{5},
\]
\[
\sum \frac{a^2}{2a^2 + 5} \leq \frac{3}{5}.
\]
Using the Cauchy-Schwarz inequality gives
\[
\frac{25}{3(2a^2 + 3)} = \frac{25}{6a^2 + (a + b + c)^2}
\]
\[
= \frac{(2 + 2 + 1)^2}{2(2a^2 + bc) + 2a(a + b + c) + a^2 + b^2 + c^2}
\]
\[
\leq \frac{2^2}{2(2a^2 + bc)} + \frac{2^2}{2a(a + b + c)} + \frac{1}{a^2 + b^2 + c^2}.
\]
hence
\[\sum \frac{25a^2}{3(2a^2 + 3)} \leq \sum \frac{2a^2}{2a^2 + bc} + \sum \frac{2a}{a + b + c} + \sum \frac{a^2}{a^2 + b^2 + c^2} = \sum \frac{2a^2}{2a^2 + bc} + 3.\]

Therefore, it suffices to show that
\[\sum \frac{a^2}{2a^2 + bc} \leq 1,\]
which is equivalent to
\[\sum \left(\frac{1}{2} - \frac{a^2}{2a^2 + bc}\right) \geq \frac{1}{2},\]
\[\sum \frac{bc}{2a^2 + bc} \geq 1.\]

Using again the Cauchy-Schwarz inequality, we get
\[\sum \frac{bc}{2a^2 + bc} \geq \frac{(\sum bc)^2}{\sum bc(2a^2 + bc)} = 1.\]

The equality holds for \(a = b = c = 1\), as well as for \(a = 0\) and \(b = c = 3/2\) (or any cyclic permutation).

Second Solution. First, we can check that the desired inequality becomes an equality for \(a = b = c = 1\), and for \(a = 0\) and \(b = c = 3/2\). Consider then the inequality \(f(x) \geq 0\), where
\[f(x) = \frac{1}{2x^2 + 3} - A - Bx.\]

We have
\[f'(x) = \frac{-4x}{(2x^2 + 3)^2} - B.\]

From the conditions \(f(1) = 0\) and \(f'(1) = 0\), we get \(A = 9/25\) and \(B = -4/25\). Also, from the conditions \(f(3/2) = 0\) and \(f'(3/2) = 0\), we get \(A = 22/75\) and \(B = -8/75\). From these values of \(A\) and \(B\), we obtain the identities
\[\frac{1}{2x^2 + 3} - \frac{9 - 4x}{25} = \frac{2(x - 1)^2(4x - 1)}{25(2x^2 + 3)},\]
\[\frac{1}{2x^2 + 3} - \frac{22 - 8x}{75} = \frac{(2x - 3)^2(4x + 1)}{75(2x^2 + 3)},\]
and the inequalities
\[\frac{1}{2x^2 + 3} \geq \frac{9 - 4x}{25}, \quad x \geq \frac{1}{4},\]
Without loss of generality, assume that $a \geq b \geq c$.

Case 1: $a \geq b \geq c \geq \frac{1}{4}$. By summing the inequalities

$$\frac{1}{2a^2 + 3} \geq \frac{9 - 4a}{25}, \quad \frac{1}{2b^2 + 3} \geq \frac{9 - 4b}{25}, \quad \frac{1}{2c^2 + 3} \geq \frac{9 - 4c}{25},$$

we get

$$\frac{1}{2a^2 + 3} + \frac{1}{2b^2 + 3} + \frac{1}{2c^2 + 3} \geq \frac{27 - 4(a + b + c)}{25} = \frac{3}{5}.$$

Case 2: $a \geq b \geq \frac{1}{4} \geq c$. We have

$$\sum \frac{1}{2a^2 + 3} \geq \frac{22 - 8a}{75} + \frac{22 - 8b}{75} + \frac{1}{2c^2 + 3} = \frac{44 - 8(a + b)}{75} + \frac{1}{2c^2 + 3} = \frac{20 + 8c}{75} + \frac{1}{2c^2 + 3}.$$

Therefore, it suffices to show that

$$\frac{20 + 8c}{75} + \frac{1}{2c^2 + 3} \geq \frac{3}{5},$$

which is equivalent to the obvious inequality

$$c(8c^2 - 25c + 12) \geq 0.$$

Case 3: $a \geq \frac{1}{4} \geq b \geq c$. We have

$$\sum \frac{1}{2a^2 + 3} > \frac{1}{2b^2 + 3} + \frac{1}{2c^2 + 3} \geq \frac{2}{8 + 3} > \frac{3}{5}.$$
First Solution. Let \(b_1 \) and \(c_1 \) be positive numbers such that
\[
b + b_1 = 2, \quad c + c_1 = 2.
\]
We have
\[
b_1 + c_1 = 1 + a, \quad 1 \leq b_1 \leq c_1 \leq a.
\]
In addition, we claim that
\[
\frac{1}{b^2 + 2} + \frac{1}{b_1^2 + 2} \geq \frac{2}{3}, \quad \frac{1}{c^2 + 2} + \frac{1}{c_1^2 + 2} \geq \frac{2}{3}.
\]
Indeed,
\[
\frac{1}{b^2 + 2} + \frac{1}{b_1^2 + 2} = \frac{2}{3(b^2 + 2)(b_1^2 + 2)} = \frac{bb_1(b - b_1)^2}{6(b^2 + 2)(b_1^2 + 2)} \geq 0,
\]
\[
\frac{1}{c^2 + 2} + \frac{1}{c_1^2 + 2} = \frac{cc_1(c - c_1)^2}{6(c^2 + 2)(c_1^2 + 2)} \geq 0.
\]
Using these inequalities, it suffices to show that
\[
\frac{1}{a^2 + 2} + \frac{1}{3} \geq \frac{1}{b_1^2 + 2} + \frac{1}{c_1^2 + 2}.
\]
Since
\[
\frac{1}{3} \frac{1}{b_1^2 + 2} = \frac{(b_1 - 1)(b_1 + 1)}{3(b_1^2 + 2)}, \quad \frac{1}{c_1^2 + 2} - \frac{1}{a^2 + 2} = \frac{(a - c_1)(a + c_1)}{(a^2 + 2)(c_1^2 + 2)},
\]
we need to prove that
\[
\frac{b_1 + 1}{3(b_1^2 + 2)} \geq \frac{a + c_1}{(a^2 + 2)(c_1^2 + 2)}.
\]
We can get this inequality by multiplying the inequalities
\[
\frac{b_1 + 1}{b_1^2 + 2} \geq \frac{c_1 + 1}{c_1^2 + 2}, \quad \frac{c_1 + 1}{3} \geq \frac{a + c_1}{a^2 + 2}.
\]
We have
\[
\frac{b_1 + 1}{b_1^2 + 2} - \frac{c_1 + 1}{c_1^2 + 2} = \frac{(c_1 - b_1)(b_1c_1 + b_1 + c_1 - 2)}{(b_1^2 + 2)(c_1^2 + 2)} \geq 0,
\]
\[
\frac{c_1 + 1}{3} - \frac{a + c_1}{a^2 + 2} = \frac{(a - 1)(ac_1 + a + c_1 - 2)}{3(a^2 + 2)} \geq 0.
\]
The proof is completed. The equality holds for $a = b = c = 1$, as well as for $a = 2, b = 1$ and $c = 0$.

Second Solution. First, we can check that the desired inequality becomes an equality for $a = b = c = 1$, and also for $a = 2, b = 1, c = 0$. Consider then the inequality $f(x) \geq 0$, where

$$f(x) = \frac{1}{x^2 + 2} - A - Bx.$$

We have

$$f'(x) = \frac{-2x}{(x^2 + 2)^2} - B.$$

From the conditions $f(1) = 0$ and $f'(1) = 0$, we get $A = 5/9$ and $B = -2/9$. Also, from the conditions $f(2) = 0$ and $f'(2) = 0$, we get $A = 7/18$ and $B = -1/9$. From these values of A and B, we obtain the identities

$$\frac{1}{x^2 + 2} - \frac{5 - 2x}{9} = \frac{(x - 1)^2(2x - 1)}{9(x^2 + 2)},$$

$$\frac{1}{x^2 + 2} - \frac{7 - 2x}{18} = \frac{(x - 2)^2(2x + 1)}{18(x^2 + 2)},$$

and the inequalities

$$\frac{1}{x^2 + 2} \geq \frac{5 - 2x}{9}, \quad x \geq \frac{1}{2},$$

$$\frac{1}{x^2 + 2} \geq \frac{7 - 2x}{18}, \quad x \geq 0.$$

Let us define

$$g(x) = \frac{1}{x^2 + 2}.$$

Notice that for $d \in (0, \sqrt{2}]$ and $x \in [0, d]$, we have

$$g(x) \geq g(0) + \frac{g(d) - g(0)}{d} x,$$

because

$$g(x) - g(0) - \frac{g(d) - g(0)}{d} x = \frac{x(d - x)(2 - dx)}{2(d^2 + 2)(x^2 + 2)} \geq 0.$$

For $d = 1/2$ and $d = 1$, we get the inequalities

$$\frac{1}{x^2 + 2} \geq \frac{9 - 2x}{18}, \quad 0 \leq x \leq \frac{1}{2},$$

$$\frac{1}{x^2 + 2} \geq \frac{3 - x}{6}, \quad 0 \leq x \leq 1.$$

Consider further two cases: $c \geq 1/2$ and $c \leq 1/2.$
Case 1: \(c \geq \frac{1}{2} \). By summing the inequalities
\[
\frac{1}{a^2 + 2} \geq \frac{5 - 2a}{9}, \quad \frac{1}{b^2 + 2} \geq \frac{5 - 2b}{9}, \quad \frac{1}{c^2 + 2} \geq \frac{5 - 2c}{9},
\]
we get
\[
\frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2} \geq \frac{15 - 2(a + b + c)}{9} = 1.
\]

Case 2: \(c \leq \frac{1}{2} \). We have
\[
\frac{1}{a^2 + 2} \geq \frac{7 - 2a}{18},
\]
\[
\frac{1}{b^2 + 2} \geq \frac{3 - b}{6} \geq \frac{8 - 2b}{18},
\]
\[
\frac{1}{c^2 + 2} \geq \frac{9 - 2c}{18}.
\]
Therefore,
\[
\frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2} \geq \frac{7 - 2a}{18} + \frac{8 - 2b}{18} + \frac{9 - 2c}{18} = 1.
\]

\(\Box \)

P 1.33. Let \(a, b, c \) be nonnegative real numbers such that \(ab + bc + ca = 3 \). Prove that
\[
\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} \geq \frac{a + b + c}{6} + \frac{3}{a + b + c}.
\]

(Vasile Cîrtoaje, 2007)

First Solution. Denoting \(x = a + b + c \), we have
\[
\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} = \frac{(a + b + c)^2 + ab + bc + ca}{(a + b + c)(ab + bc + ca) - abc} = \frac{x^2 + 3}{3x - abc}.
\]

Then, the inequality becomes
\[
\frac{x^2 + 3}{3x - abc} \geq \frac{x}{6} + \frac{3}{x},
\]
or
\[
3(x^3 + 9abc - 12x) + abc(x^2 - 9) \geq 0.
\]
Indeed, which is equivalent to

\[\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \geq \frac{a+b+c}{2(ab+bc+ca)} + \frac{3}{a+b+c}, \]

we get \(x^3 + 9abc - 12 \geq 0 \). The equality holds for \(a = b = c = 1 \), and for \(a = 0 \) and \(b = c = \sqrt{3} \) (or any cyclic permutation).

Second Solution. We apply the SOS method. Write the inequality as follows:

\[
2(a+b+c)\left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right) \geq \frac{(a+b+c)^2}{ab+bc+ca} + 6,
\]

\[
[(a+b) + (b+c) + (c+a)]\left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right) - 9 \geq \frac{(a+b+c)^2}{ab+bc+ca} - 3,
\]

\[
\sum \frac{(b-c)^2}{(a+b)(c+a)} \geq \frac{1}{2(ab+bc+ca)} \sum (b-c)^2,
\]

\[
\sum \frac{ab+bc+ca-a^2}{(a+b)(c+a)}(b-c)^2 \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c \). Since \(ab+bc+ca-c^2 \geq 0 \), it suffices to show that

\[
\frac{ab+bc+ca-a^2}{(a+b)(c+a)}(b-c)^2 + \frac{ab+bc+ca-b^2}{(b+c)(a+b)}(c-a)^2 \geq 0.
\]

Since \(ab+bc+ca-b^2 \geq 0 \) and \(c-a)^2 \geq (b-c)^2 \), it is enough to prove that

\[
\frac{ab+bc+ca-a^2}{(a+b)(c+a)}(b-c)^2 + \frac{ab+bc+ca-b^2}{(b+c)(a+b)}(b-c)^2 \geq 0.
\]

This is true if

\[
\frac{ab+bc+ca-a^2}{(a+b)(c+a)} + \frac{ab+bc+ca-b^2}{(b+c)(a+b)} \geq 0,
\]

which is equivalent to

\[
\frac{3-a^2}{3+a^2} + \frac{3-b^2}{3+b^2} \geq 0,
\]

Indeed,

\[
\frac{3-a^2}{3+a^2} + \frac{3-b^2}{3+b^2} = \frac{2(9-a^2b^2)}{(3+a^2)(3+b^2)} = \frac{2c(a+b)(3+ab)}{(3+a^2)(3+b^2)} \geq 0.
\]

\(\square \)
P 1.34. Let \(a, b, c \) be nonnegative real numbers such that \(ab + bc + ca = 3 \). Prove that

\[
\frac{1}{a^2 + 1} + \frac{1}{b^2 + 1} + \frac{1}{c^2 + 1} \geq \frac{3}{2}.
\]

(Vasile Cîrtoaje, 2005)

First Solution. After expanding, the inequality can be restated as

\[
a^2 + b^2 + c^2 + 3 \geq a^2 b^2 + b^2 c^2 + c^2 a^2 + 3a^2 b^2 c^2.
\]

From

\[
(a + b + c)(ab + bc + ca) - 9abc = a(b - c)^2 + b(c - a)^2 + c(a - b)^2 \geq 0,
\]

we get

\[
a + b + c \geq 3abc.
\]

So, it suffices to show that

\[
a^2 + b^2 + c^2 + 3 \geq a^2 b^2 + b^2 c^2 + c^2 a^2 + abc(a + b + c).
\]

This is equivalent to the homogeneous inequalities

\[
(ab + bc + ca)(a^2 + b^2 + c^2) + (ab + bc + ca)^2 \geq 3(a^2 b^2 + b^2 c^2 + c^2 a^2) + 3abc(a + b + c),
\]

\[
ab(a^2 + b^2) + bc(b^2 + c^2) + ca(c^2 + a^2) \geq 2(a^2 b^2 + b^2 c^2 + c^2 a^2),
\]

\[
ab(a - b)^2 + bc(b - c)^2 + ca(c - a)^2 \geq 0.
\]

The equality holds for \(a = b = c = 1 \), and for \(a = 0 \) and \(b = c = \sqrt{3} \) (or any cyclic permutation).

Second Solution. Without loss of generality, assume that \(a = \min\{a, b, c\} \). From \(ab + bc + ca = 3 \), we get \(bc \geq 1 \). Also, from

\[
(a + b + c)(ab + bc + ca) - 9abc = a(b - c)^2 + b(c - a)^2 + c(a - b)^2 \geq 0,
\]

we get

\[
a + b + c \geq 3abc.
\]

The desired inequality follows by summing the inequalities

\[
\frac{1}{b^2 + 1} + \frac{1}{c^2 + 1} \geq \frac{2}{bc + 1},
\]

\[
\frac{1}{a^2 + 1} + \frac{2}{bc + 1} \geq \frac{3}{2}.
\]
We have
\[
\frac{1}{b^2 + 1} + \frac{1}{c^2 + 1} - \frac{2}{bc + 1} = \frac{b(c - b)}{(b^2 + 1)(bc + 1)} + \frac{c(b - c)}{(c^2 + 1)(bc + 1)}
\]
\[= \frac{(b - c)^2(bc - 1)}{(b + 1)(c^2 + 1)(bc + 1)} \geq 0\]
and
\[
\frac{1}{a^2 + 1} + \frac{2}{bc + 1} - \frac{3}{2} = \frac{a^2 - bc + 3 - 3a^2bc}{2(a^2 + 1)(bc + 1)} = \frac{a(a + b + c - 3abc)}{2(a^2 + 1)(bc + 1)} \geq 0.
\]

Third Solution. Since
\[
\frac{1}{a^2 + 1} = 1 - \frac{a^2}{a^2 + 1}, \quad \frac{1}{b^2 + 1} = 1 - \frac{b^2}{b^2 + 1}, \quad \frac{1}{c^2 + 1} = 1 - \frac{c^2}{c^2 + 1},
\]
we can rewrite the inequality as
\[
\frac{a^2}{a^2 + 1} + \frac{b^2}{b^2 + 1} + \frac{c^2}{c^2 + 1} \leq \frac{3}{2},
\]
or, in the homogeneous form
\[
\sum \frac{a^2}{3a^2 + ab + bc + ca} \leq \frac{1}{2}.
\]
According to the Cauchy-Schwarz inequality, we have
\[
\frac{4a^2}{3a^2 + ab + bc + ca} = \frac{(a + a)^2}{a(a + b + c) + (2a^2 + bc)} \leq \frac{a}{a + b + c} + \frac{a^2}{2a^2 + bc}.
\]
Then,
\[
\sum \frac{4a^2}{3a^2 + ab + bc + ca} \leq 1 + \sum \frac{a^2}{2a^2 + bc},
\]
and it suffices to show that
\[
\sum \frac{a^2}{2a^2 + bc} \leq 1,
\]
or, equivalently,
\[
\sum \frac{bc}{2a^2 + bc} \geq 1.
\]
This follows from the Cauchy-Schwarz inequality as follows:
\[
\sum \frac{bc}{2a^2 + bc} \geq \frac{(\sum bc)^2}{\sum bc(2a^2 + bc)} = \frac{\sum b^2c^2 + 2abc \sum a}{2abc \sum a + \sum b^2c^2} = 1.
\]
Remark. We can write the inequality in P 1.34 in the homogeneous form
\[
\frac{1}{1 + \frac{3a^2}{ab + bc + ca}} + \frac{1}{1 + \frac{3b^2}{ab + bc + ca}} + \frac{1}{1 + \frac{3c^2}{ab + bc + ca}} \geq \frac{3}{2}.
\]
Substituting \(a, b, c\) by \(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\), respectively, we get
\[
\frac{x}{x + \frac{3yz}{x + y + z}} + \frac{y}{y + \frac{3zx}{x + y + z}} + \frac{z}{z + \frac{3xy}{x + y + z}} \geq \frac{3}{2}.
\]
So, we find the following result.

- If \(x, y, z\) are positive real numbers such that \(x + y + z = 3\), then
 \[
 \frac{x}{x + yz} + \frac{y}{y + zx} + \frac{z}{z + xy} \geq \frac{3}{2}.
 \]

\(\square\)

P 1.35. Let \(a, b, c\) be positive real numbers such that \(ab + bc + ca = 3\). Prove that
\[
\frac{a^2}{a^2 + b + c} + \frac{b^2}{b^2 + c + a} + \frac{c^2}{c^2 + a + b} \geq 1.
\]

\((\text{Vasile Cîrtoaje}, 2005)\)

Solution. We apply the Cauchy-Schwarz inequality in the following way
\[
\sum \frac{a^2}{a^2 + b + c} \geq \frac{(a^{3/2} + b^{3/2} + c^{3/2})^2}{\sum a(a^2 + b + c)} = \frac{\sum a^3 + 2\sum(ab)^{3/2}}{\sum a^3 + 6}.
\]
Then, we still have to show that
\[
(ab)^{3/2} + (bc)^{3/2} + (ca)^{3/2} \geq 3.
\]
By the AM-GM inequality,
\[
(ab)^{3/2} = \frac{(ab)^{3/2} + (ab)^{3/2} + 1}{2} \geq \frac{3ab}{2} - \frac{1}{2},
\]
and hence
\[
\sum (ab)^{3/2} \geq \frac{3}{2} \sum ab - \frac{3}{2} = 3.
\]
The equality holds for \(a = b = c = 1\).

\(\square\)
P 1.36. Let a, b, c be positive real numbers such that $ab + bc + ca = 3$. Prove that

\[
\frac{bc + 4}{a^2 + 4} + \frac{ca + 4}{b^2 + 4} + \frac{ab + 4}{c^2 + 4} \leq 3 \leq \frac{bc + 2}{a^2 + 2} + \frac{ca + 2}{b^2 + 2} + \frac{ab + 2}{c^2 + 2}.
\]

(Vasile Cîrtoaje, 2007)

Solution. More general, using the SOS method, we will show that

\[
(k - 3) \left(\frac{bc + k}{a^2 + k} + \frac{ca + k}{b^2 + k} + \frac{ab + k}{c^2 + k} - 3 \right) \leq 0
\]

for $k > 0$. This inequality is equivalent to

\[
(k - 3) \sum \frac{a^2 - bc}{a^2 + k} \geq 0.
\]

Since

\[
2 \sum \frac{a^2 - bc}{a^2 + k} = \sum \frac{(a - b)(a + c) + (a - c)(a + b)}{a^2 + k}
= \sum \frac{(a - b)(a + c)}{a^2 + k} + \sum \frac{(b - a)(b + c)}{b^2 + k}
= (k - ab - bc - ca) \sum \frac{(a - b)^2}{(a^2 + p)(b^2 + p)}
= (k - 3) \sum \frac{(a - b)^2}{(a^2 + p)(b^2 + p)},
\]

we have

\[
2(k - 3) \sum \frac{a^2 - bc}{a^2 + k} = (k - 3)^2 \sum \frac{(a - b)^2}{(a^2 + k)(b^2 + k)} \geq 0.
\]

Equality in both inequalities holds for $a = b = c = 1$. \qed

P 1.37. Let a, b, c be nonnegative real numbers such that $ab + bc + ca = 3$. If $k \geq 2 + \sqrt{3}$, then

\[
\frac{1}{a + k} + \frac{1}{b + k} + \frac{1}{c + k} \leq \frac{3}{1 + k}.
\]

(Vasile Cîrtoaje, 2007)

Solution. Let us denote $p = a + b + c$, $p \geq 3$. By expanding, the inequality becomes

\[
k(k - 2)p + 3abc \geq 3(k - 1)^2.
\]
Since this inequality is true for \(p \geq \frac{3(k-1)^2}{(k^2-2k)} \), consider further that
\[
p \leq \frac{3(k-1)^2}{k(k-2)}.
\]
From Schur’s inequality
\[
(a + b + c)^3 + 9abc \geq 4(ab + bc + ca)(a + b + c),
\]
we get \(9abc \geq 12p - p^3 \). Therefore, it suffices to prove that
\[
3k(k-2)p + 12p - p^3 \geq 9(k-1)^2,
\]
or, equivalently,
\[
(p - 3)[(3(k-1)^2 - p^2 - 3p] \geq 0.
\]
Thus, it remains to prove that
\[
3(k-1)^2 - p^2 - 3p \geq 0.
\]
Since \(p \leq \frac{3(k-1)^2}{(k^2-2k)} \) and \(k \geq 2 + \sqrt{3} \), we have
\[
3(k-1)^2 - p^2 - 3p \geq 3(k-1)^2 - \frac{9(k-1)^4}{k^2(k-2)^2} - \frac{9(k-1)^2}{k(k-2)}
\]
\[
= \frac{3(k-1)^2(k^2 - 3)(k^2 - 4k + 1)}{k^2(k-2)^2} \geq 0.
\]
The equality holds for \(a = b = c = 1 \). In the case \(k = 2 + \sqrt{3} \), the equality holds again for \(a = 0 \) and \(b = c = \sqrt{3} \) (or any cyclic permutation).

\(\square \)

P 1.38. Let \(a, b, c \) be nonnegative real numbers such that \(a^2 + b^2 + c^2 = 3 \). Prove that
\[
\frac{a(b + c)}{1 + bc} + \frac{b(c + a)}{1 + ca} + \frac{c(a + b)}{1 + ab} \leq 3.
\]

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality in the homogeneous form
\[
\sum \frac{a(b + c)}{a^2 + b^2 + c^2 + 3bc} \leq 1,
\]
or
\[
\sum \left[\frac{a(b + c)}{a^2 + b^2 + c^2 + 3bc} - \frac{a}{a + b + c} \right] \leq 0,
\]
\[\sum \frac{a(a-b)(a-c)}{a^2 + b^2 + c^2 + 3bc} \geq 0. \]

Without loss of generality, assume that \(a \geq b \geq c \). Then, it suffices to prove that

\[\frac{a(a-b)(a-c)}{a^2 + b^2 + c^2 + 3bc} + \frac{b(b-c)(b-a)}{a^2 + b^2 + c^2 + 3ca} \geq 0. \]

This is true if

\[\frac{a(a-c)}{a^2 + b^2 + c^2 + 3bc} \geq \frac{b(b-c)}{a^2 + b^2 + c^2 + 3ca}. \]

Since \(a(a-c) \geq b(b-c) \) and

\[\frac{1}{a^2 + b^2 + c^2 + 3bc} \geq \frac{1}{a^2 + b^2 + c^2 + 3ca}, \]

the conclusion follows. The equality holds for \(a = b = c = 1 \). and for \(a = 0 \) and \(b = c = \sqrt{3}/2 \) (or any cyclic permutation).

\[\square \]

P 1.39. Let \(a, b, c \) be positive real numbers such that \(a^2 + b^2 + c^2 = 3 \). Prove that

\[\frac{a^2 + b^2}{a + b} + \frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} \leq 3. \]

(Cezar Lupu, 2005)

First Solution. We apply the SOS method. Write the inequality in the homogeneous form

\[\sum \left(\frac{b^2 + c^2}{b + c} - \frac{b + c}{2} \right) \geq \sqrt{3(a^2 + b^2 + c^2)} - a - b - c, \]

or

\[\sum \frac{(b-c)^2}{2(b+c)} \geq \frac{\sum(b-c)^2}{\sqrt{3(a^2 + b^2 + c^2)} + a + b + c}. \]

Since \(\sqrt{3(a^2 + b^2 + c^2)} + a + b + c \geq 2(a + b + c) > 2(b + c) \), the conclusion follows. The equality holds for \(a = b = c = 1 \).

Second Solution. By virtue of the Cauchy-Schwarz inequality, we have

\[\sum \frac{a^2 + b^2}{a + b} \geq \frac{(\sum a^2 + b^2)^2}{\sum(a + b)} = \frac{2 \sum a^2 + 2 \sum \sqrt{(a^2 + b^2)(a^2 + c^2)}}{2 \sum a} \]

\[\geq \frac{2 \sum a^2 + 2 \sum (a^2 + bc)}{2 \sum a} = \frac{3 \sum a^2 + (\sum a)^2}{2 \sum a} \]

\[= \frac{9 + (\sum a)^2}{2 \sum a} = 3 + \frac{(\sum a - 3)^2}{2 \sum a} \geq 3. \]

\[\square \]
P 1.40. Let \(a, b, c \) be positive real numbers such that \(a^2 + b^2 + c^2 = 3 \). Prove that

\[
\frac{ab}{a + b} + \frac{bc}{b + c} + \frac{ca}{c + a} + 2 \leq \frac{7}{6}(a + b + c).
\]

(Vasile Cîrtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as

\[
3 \sum \left(b + c - \frac{4bc}{b + c} \right) \geq 8(3 - a - b - c).
\]

Since

\[
b + c - \frac{4bc}{b + c} = \frac{(b - c)^2}{b + c}
\]

and

\[
3 - a - b - c = \frac{9 - (a + b + c)^2}{3 + a + b + c} = \frac{3(a^2 + b^2 + c^2) - (a + b + c)^2}{3 + a + b + c}
\]

we can write the inequality as

\[
S_a(b - c)^2 + S_b(c - a)^2 + S_c(a - b)^2 \geq 0,
\]

where

\[
S_a = \frac{3}{b + c} - \frac{8}{3 + a + b + c}.
\]

Without loss of generality, assume that \(a \geq b \geq c \). Since \(S_a \geq S_b \geq S_c \), it suffices to show that \(S_b + S_c \geq 0 \). Indeed, if this condition is fulfilled, then \(S_a \geq S_b \geq (S_b + S_c)/2 \geq 0 \), and hence

\[
S_a(b - c)^2 + S_b(c - a)^2 + S_c(a - b)^2 \geq S_b(c - a)^2 + S_c(a - b)^2
\]

\[
\geq S_b(a - b)^2 + S_c(a - b)^2 = (a - b)^2(S_b + S_c) \geq 0.
\]

Since

\[
S_b + S_c = \frac{4(9 - 5a - b - c)}{(a + b + 2c)(3 + a + b + c)},
\]

we need to show that \(9 \geq 5a + b + c \). This follows immediately from the Cauchy-Schwarz inequality

\[
(25 + 1 + 1)(a^2 + b^2 + c^2) \geq (5a + b + c)^2.
\]

Thus, the proof is completed. The equality holds for \(a = b = c = 1 \), and for \(a = 5/3 \) and \(b = c = 1/3 \) (or any cyclic permutation).

\[\square \]
P 1.41. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 = 3\). Prove that

\[
\begin{align*}
(a) & \quad \frac{1}{3 - ab} + \frac{1}{3 - bc} + \frac{1}{3 - ca} \leq \frac{3}{2}; \\
(b) & \quad \frac{1}{\sqrt{6} - ab} + \frac{1}{\sqrt{6} - bc} + \frac{1}{\sqrt{6} - ca} \leq \frac{3}{\sqrt{6} - 1}.
\end{align*}
\]

(Vasile Cîrtoaje, 2005)

Solution. (a) Since

\[
\frac{3}{3 - ab} = 1 + \frac{ab}{3 - ab} = 1 + \frac{2ab}{a^2 + b^2 + 2c^2 + (a - b)^2} \leq 1 + \frac{2ab}{a^2 + b^2 + 2c^2} \leq 1 + \frac{(a + b)^2}{2(a^2 + b^2 + 2c^2)},
\]

it suffices to prove that

\[
\frac{(a + b)^2}{a^2 + b^2 + 2c^2} + \frac{(b + c)^2}{b^2 + c^2 + 2a^2} + \frac{(c + a)^2}{c^2 + a^2 + 2b^2} \leq 3.
\]

By the Cauchy-Schwarz inequality, we have

\[
\frac{(a + b)^2}{a^2 + b^2 + 2c^2} = \frac{(a + b)^2}{(a^2 + c^2) + (b^2 + c^2)} \leq \frac{a^2}{a^2 + c^2} + \frac{b^2}{b^2 + c^2}.
\]

Thus,

\[
\sum \frac{(a + b)^2}{a^2 + b^2 + 2c^2} \leq \sum \frac{a^2}{a^2 + c^2} + \sum \frac{b^2}{b^2 + c^2} = \sum \frac{a^2}{a^2 + c^2} + \sum \frac{c^2}{c^2 + a^2} = 3.
\]

The equality holds for \(a = b = c\).

(b) According to P 1.28, the following inequality holds

\[
\frac{1}{6 - a^2 b^2} + \frac{1}{6 - b^2 c^2} + \frac{1}{6 - c^2 a^2} \leq \frac{3}{5}.
\]

Since

\[
\frac{2\sqrt{6}}{6 - a^2 b^2} = \frac{1}{\sqrt{6} - ab} + \frac{1}{\sqrt{6} + ab},
\]

this inequality becomes

\[
\sum \frac{1}{\sqrt{6} - ab} + \sum \frac{1}{\sqrt{6} + ab} \leq \frac{6\sqrt{6}}{5}.
\]
Thus, it suffices to show that
\[\sum \frac{1}{\sqrt{6} + ab} \geq \frac{3}{\sqrt{6} + 1}. \]

Since \(ab + bc + ca \leq a^2 + b^2 + c^2 = 3 \), by the Cauchy-Schwarz inequality, we have
\[\sum \frac{1}{\sqrt{6} + ab} \geq \frac{9}{3\sqrt{6} + ab + bc + ca} \geq \frac{3}{\sqrt{6} + 1}. \]
The equality holds for \(a = b = c = 1 \).

\[\square \]

P 1.42. Let \(a, b, c \) be positive real numbers such that \(a^2 + b^2 + c^2 = 3 \). Prove that
\[\frac{1}{1 + a^5} + \frac{1}{1 + b^5} + \frac{1}{1 + c^5} \geq \frac{3}{2}. \]

(Vasile Cîrtoaje, 2007)

Solution. Let \(a = \min\{a, b, c\} \). There are two cases to consider

Case 1: \(a \geq 1/2 \). The desired inequality follows by summing the inequalities
\[\frac{8}{1 + a^5} \geq 9 - 5a^2, \quad \frac{8}{1 + b^5} \geq 9 - 5b^2, \quad \frac{8}{1 + c^5} \geq 9 - 5c^2; \]

To obtain these inequalities, we start from the inequality \(\frac{8}{1 + x^5} \geq p + qx^2 \), whose coefficients \(p \) and \(q \) will be determined such that the polynomial \(P(x) = 8 - (1 + x^5)(p + qx^2) \) divides by \((x - 1)^2 \). It is easy to check that \(P(1) = 0 \) involves \(p + q = 4 \), when
\[P(x) = 4(2 - x^2 - x^7) - p(1 - x^2 + x^5 - x^7) = (1 - x)Q(x), \]
where
\[Q(x) = 4(2 + 2x + x^2 + x^3 + x^4 + x^5 + x^6) - p(1 + x + x^5 + x^6). \]

In addition, \(Q(1) = 0 \) involves \(p = 9 \). In this case,
\[P(x) = (1 - x)^2(5x^5 + 10x^4 + 6x^3 + 2x^2 - 2x - 1) \]
\[= (1 - x)^2[x^5 + (2x - 1)(2x^4 + 6x^3 + 6x^2 + 4x + 1)] \geq 0. \]

Case 2: \(a \geq 1/2 \). Write the inequality as
\[\frac{1}{1 + a^5} - \frac{1}{2} \geq \frac{b^5c^5 - 1}{(1 + b^5)(1 + c^5)}. \]
Symmetric Rational Inequalities

Since
\[
\frac{1}{1 + a^5} - \frac{1}{2} \geq \frac{32}{33} - \frac{1}{2} = \frac{31}{66}
\]
and
\[
(1 + b^5)(1 + c^5) \geq (1 + \sqrt{b^5c^5})^2,
\]
it suffices to show that
\[
31(1 + \sqrt{b^5c^5})^2 \geq 66(b^5c^5 - 1),
\]
which is equivalent to \(bc \leq (97/35)^{2/5}\). Indeed, from
\[
3 = a^2 + b^2 + c^2 > b^2 + c^2 \geq 2bc,
\]
we get \(bc < 3/2 < (97/35)^{2/5}\). This completes the proof. The equality holds for \(a = b = c = 1\).

\[\Box \]

P 1.43. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that
\[
\frac{1}{a^2 + a + 1} + \frac{1}{b^2 + b + 1} + \frac{1}{c^2 + c + 1} \geq 1.
\]

First Solution. Using the substitutions \(a = yz/x^2\), \(b = zx/y^2\), \(c = xy/z^2\), where \(x, y, z\) are positive real numbers, the inequality becomes
\[
\sum \frac{x^4}{x^4 + x^2yz + y^2z^2} \geq 1.
\]

By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{x^4}{x^4 + x^2yz + y^2z^2} \geq \frac{(\sum x^2)^2}{\sum(x^4 + x^2yz + y^2z^2)} = \frac{\sum x^4 + 2\sum y^2z^2}{\sum x^4 + xyz\sum x + \sum y^2z^2}.
\]
Therefore, it suffices to show that
\[
\sum y^2z^2 \geq xyz\sum x,
\]
which is equivalent to \(\sum x^2(y - z)^2 \geq 0\). The equality holds for \(a = b = c = 1\).

Second Solution. Using the substitutions \(a = y/x\), \(b = z/y\), \(c = x/z\), where \(x, y, z > 0\), we need to prove that
\[
\frac{x^2}{x^2 + xy + y^2} + \frac{y^2}{y^2 + yz + z^2} + \frac{z^2}{z^2 + zx + z^2} \geq 1.
\]
Since
\[\frac{x^2(y^2 + z^2 + xy + yz + zx)}{x^2 + xy + y^2} = \frac{x^2z(x + y + z)}{x^2 + xy + y^2}, \]
multiplying by \(x^2 + y^2 + z^2 + xy + yz + zx\), the inequality can be written as
\[\sum \frac{x^2z}{x^2 + xy + y^2} \geq \frac{xy + yz + zx}{x + y + z}. \]

By the Cauchy-Schwarz inequality, we have
\[\sum \frac{x^2z}{x^2 + xy + y^2} \geq \frac{(\sum xz)^2}{\sum (x^2 + xy + y^2)} = \frac{xy + yz + zx}{x + y + z}. \]

Remark. The inequality in P 1.43 is a particular case of the following more general inequality: (Vasile Cîrtoaje, 2009).

- Let \(a_1, a_2, \ldots, a_n\) (\(n \geq 3\)) be positive real numbers such that \(a_1a_2 \cdots a_n = 1\). If \(p\) and \(q\) are nonnegative real numbers satisfying \(p + q = n - 1\), then
 \[\sum_{i=1}^{i=n} \frac{1}{1 + pa_i + qa_i^2} \geq 1. \]

\[\square \]

P 1.44. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that
\[\frac{1}{a^2 - a + 1} + \frac{1}{b^2 - b + 1} + \frac{1}{c^2 - c + 1} \leq 3. \]

First Solution. Since
\[\frac{1}{a^2 - a + 1} + \frac{1}{a^2 + a + 1} = \frac{2(a^2 + 1)}{a^4 + a^2 + 1} = 2 - \frac{2a^4}{a^4 + a^2 + 1}, \]
we can rewrite the inequality as
\[\sum \frac{1}{a^2 + a + 1} + 2 \sum \frac{a^4}{a^4 + a^2 + 1} \geq 3. \]
Thus, it suffices to show that
\[\sum \frac{1}{a^2 + a + 1} \geq 1 \]
and
\[\sum \frac{a^4}{a^4 + a^2 + 1} \geq 1. \]
The first inequality is just the inequality in P 1.43, while the second follows from the first by substituting \(a, b, c\) with \(a^{-2}, b^{-2}, c^{-2}\), respectively. The equality holds for \(a = b = c = 1\).

Second Solution. Write the inequality as

\[
\sum\left(\frac{1}{a^2 - a + 1}\right) \geq 1,
\]

\[
\sum \frac{(2a - 1)^2}{a^2 - a + 1} \geq 3.
\]

Let \(p = a + b + c\) and \(q = ab + bc + ca\). By the Cauchy-Schwarz inequality, we have

\[
\sum \frac{(2a - 1)^2}{a^2 - a + 1} \geq \frac{(2\sum a - 3)^2}{\sum(a^2 - a + 1)} = \frac{(2p - 3)^2}{p^2 - 2q - p + 3}.
\]

Thus, it suffices to show that

\[
(2p - 3)^2 \geq 3(p^2 - 2q - p + 3),
\]

which is equivalent to

\[
p^2 + 6q - 9p \geq 0.
\]

From the known inequality

\[
(ab + bc + ca)^2 \geq 3abc(a + b + c),
\]

we get \(q^2 \geq 3p\). Using this inequality and the AM-GM inequality, we get

\[
p^2 + 6q = p^2 + 3q + 3q \geq 3\sqrt[3]{9p^2q^2} \geq 3\sqrt[3]{9p^2(3p)} = 9p.
\]

\[\square\]

P 1.45. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that

\[
\frac{3 + a}{(1 + a)^2} + \frac{3 + b}{(1 + b)^2} + \frac{3 + c}{(1 + c)^2} \geq 3.
\]

Solution. From the identity

\[
\frac{1}{(1 + a)^2} + \frac{1}{(1 + b)^2} - \frac{1}{1 + ab} = \frac{ab(a - b)^2 + (1 - ab)^2}{(1 + a)^2(1 + b)^2(1 + ab)},
\]
we get the known inequality
\[
\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} \geq \frac{1}{1+ab}.
\]

We can also prove this inequality using the Cauchy-Schwarz inequality, as follows
\[
\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} - \frac{1}{1+ab} \geq \frac{(b+a)^2}{b^2(1+a)^2 + a^2(1+b)^2} - \frac{1}{1+ab} = \frac{ab[a^2 + b^2 - 2(a+b) + 2]}{(1+ab)[b^2(1+a)^2 + a^2(1+b)^2]} \geq 0.
\]

In addition, this inequality can be obtained by summing the inequalities
\[
\frac{1}{(1+a)^2} \geq \frac{b}{(a+b)(1+ab)},
\]
\[
\frac{1}{(1+b)^2} \geq \frac{a}{(a+b)(1+ab)}.
\]
Thus, we have
\[
\sum \frac{3+a}{(1+a)^2} = \sum \frac{2}{(1+a)^2} + \sum \frac{1}{1+a} = \sum \left[\frac{1}{(1+a)^2} + \frac{1}{1+a} \right] + \sum \frac{1}{1+c} \geq \sum \frac{1}{1+ab} + \sum \frac{ab}{1+ab} = 3.
\]

The equality holds for \(a = b = c = 1\). \(\square\)

P 1.46. Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that
\[
\frac{7 - 6a}{2 + a^2} + \frac{7 - 6b}{2 + b^2} + \frac{7 - 6c}{2 + c^2} \geq 1.
\]

(Vasile Cirtoaje, 2008)

Solution. Write the inequality as
\[
\left(\frac{7 - 6a}{2 + a^2} + 1 \right) + \left(\frac{7 - 6b}{2 + b^2} + 1 \right) + \left(\frac{7 - 6c}{2 + c^2} + 1 \right) \geq 4,
\]
Symmetric Rational Inequalities 81

\[
\frac{(3 - a)^2}{2 + a^2} + \frac{(3 - b)^2}{2 + b^2} + \frac{(3 - c)^2}{2 + c^2} \geq 4.
\]

Substituting \(a, b, c\) by \(1/a, 1/b, 1/c\), respectively, we need to prove that \(abc = 1\) involves

\[
\frac{(3a - 1)^2}{2a^2 + 1} + \frac{(3b - 1)^2}{2b^2 + 1} + \frac{(3c - 1)^2}{2c^2 + 1} \geq 4.
\]

By the Cauchy-Schwarz inequality, we have

\[
\sum \frac{(3a - 1)^2}{2a^2 + 1} \geq \left(\frac{3 \sum a - 3)^2}{\sum(2a^2 + 1)} \right) = \frac{9 \sum a^2 + 18 \sum ab - 18 \sum a + 9}{2 \sum a^2 + 3}.
\]

Thus, it suffices to prove that

\[
f(a) + f(b) + f(c) \geq 3,
\]

where

\[
f(x) = x^2 + 18 \left(\frac{1}{x} - x \right).
\]

In order to do this, we use the mixing method. Without loss of generality, assume that \(a = \max\{a, b, c\}, a \geq 1, bc \leq 1\). Since

\[
f(b) + f(c) - 2f(\sqrt{bc}) = (b - c)^2 + 18(\sqrt{b} - \sqrt{c})^2 \left(\frac{1}{bc} - 1 \right) \geq 0,
\]

it suffices to show that

\[
f(a) + 2f(\sqrt{bc}) \geq 3.
\]

Write this inequality as

\[
f(x^2) + 2f \left(\frac{1}{x} \right) \geq 3,
\]

where \(x = \sqrt{a}\). It is equivalent to

\[
x^6 - 18x^4 + 36x^3 - 3x^2 - 36x + 20 \geq 0,
\]

\[
(x - 1)^2(x - 2)^2(x + 1)(x + 5) \geq 0.
\]

Since the last inequality is true, the proof is completed. The equality holds for \(a = b = c = 1\), and also for \(a = 1/4\) and \(b = c = 2\) (or any cyclic permutation).

\[
\square
\]

\textbf{P 1.47.} Let \(a, b, c\) be positive real numbers such that \(abc = 1\). Prove that

\[
\frac{a^6}{1 + 2a^5} + \frac{b^6}{1 + 2b^5} + \frac{c^6}{1 + 2c^5} \geq 1.
\]

(\textit{Vasile Cîrtoaje, 2008})
Solution. Using the substitutions
\[a = \sqrt[\frac{2}{yz}] x, \quad b = \sqrt[\frac{2}{3}] y, \quad c = \sqrt[\frac{2}{xy}] z, \]
the inequality becomes
\[\sum \frac{x^4}{y^2z^2 + 2x^3 \sqrt[3]{xyz}} \geq 1. \]
By the Cauchy-Schwarz inequality, we have
\[\sum \frac{x^4}{y^2z^2 + 2x^3 \sqrt[3]{xyz}} \geq \left(\sum x^2 \right)^2 \sum \frac{1}{y^2z^2 + 2x^3 \sqrt[3]{xyz}} = \frac{\left(\sum x^2 \right)^2}{\sum x^2y^2 + 2\sqrt[3]{xyz} \sum x^3}. \]
Therefore, we need to show that
\[\frac{\left(\sum x^2 \right)^2}{\sum x^2y^2 + 2\sqrt[3]{xyz} \sum x^3}. \]
Since \(x + y + z \geq 3 \sqrt[3]{xyz} \), it suffices to prove that
\[3\left(\sum x^2 \right)^2 \geq 3 \sum x^2y^2 + 2 \left(\sum x \right) \left(\sum x^3 \right); \]
that is,
\[\sum x^4 + 3 \sum x^2y^2 \geq 2 \sum xy(x^2 + y^2), \]
or, equivalently,
\[\sum (x - y)^4 \geq 0. \]
The equality holds for \(a = b = c = 1 \).

P 1.48. Let \(a, b, c \) be positive real numbers such that \(abc = 1 \). Prove that
\[\frac{a}{a^2 + 5} + \frac{b}{b^2 + 5} + \frac{c}{c^2 + 5} \leq \frac{1}{2}. \]

(Vasile Cîrtoaje, 2008)

Solution. Let
\[F(a, b, c) = \frac{a}{a^2 + 5} + \frac{b}{b^2 + 5} + \frac{c}{c^2 + 5}. \]
Without loss of generality, assume that \(a = \min\{a, b, c\} \).

Case 1: \(a \leq 1/5 \). We have
\[F(a, b, c) \leq \frac{a}{5} + \frac{b}{2\sqrt{5}b^2} + \frac{c}{2\sqrt{5}c^2} \leq \frac{1}{25} + \frac{1}{\sqrt{5}} < \frac{1}{2}. \]
Case 2: $a > 1/5$. Let $x = \sqrt{bc}$, $a = 1/x^2$, $x < \sqrt{5}$. We will show that

$$F(a, b, c) \leq F(a, x, x) \leq \frac{1}{2}.$$

The left inequality, $F(a, b, c) \leq F(a, x, x)$, is equivalent to

$$(\sqrt{b} - \sqrt{c})^2[10x(b + c) + 10x^2 - 25 - x^4] \geq 0.$$

This is true since

$$10x(b + c) + 10x^2 - 25 - x^4 \geq 20x^2 + 10x^2 - 25x^2 - x^4 = x^2(5 - x^2) > 0.$$

The right inequality, $F(a, x, x) \leq 1/2$, is equivalent to

$$(x - 1)^2(5x^4 - 10x^3 - 2x^2 + 6x + 5) \geq 0.$$

It is also true since

$$5x^4 - 10x^3 - 2x^2 + 6x + 5 = 5(x - 1)^4 + 2x(5x^2 - 16x + 13)$$

and

$$5x^2 + 13 \geq 2\sqrt{65x^2} > 16x.$$

The equality holds for $a = b = c = 1$.

\[\square \]

P 1.49. Let a, b, c be positive real numbers such that $abc = 1$. Prove that

$$\frac{1}{(1 + a)^2} + \frac{1}{(1 + b)^2} + \frac{1}{(1 + c)^2} + \frac{2}{(1 + a)(1 + b)(1 + c)} \geq 1.$$

(Pham Van Thuan, 2006)

First Solution. There are two of a, b, c either greater than or equal to 1, or less than or equal to 1. Let b and c be these numbers; that is, $(1 - b)(1 - c) \geq 0$. Since

$$\frac{1}{(1 + b)^2} + \frac{1}{(1 + c)^2} \geq \frac{1}{1 + bc}$$

(see the proof of P 1.45), it suffices to show that

$$\frac{1}{(1 + a)^2} + \frac{1}{1 + bc} + \frac{2}{(1 + a)(1 + b)(1 + c)} \geq 1.$$

This inequality is equivalent to

$$\frac{b^2c^2}{(1 + bc)^2} + \frac{1}{1 + bc} + \frac{2bc}{(1 + bc)(1 + b)(1 + c)} \geq 1,$$
which can be written in the obvious form
\[
\frac{bc(1-b)(1-c)}{(1+bc)(1+b)(1+c)} \geq 0.
\]
The equality holds for \(a = b = c = 1\).

Second Solution. Setting \(a = \frac{yz}{x^2}, b = \frac{zx}{y^2}, c = \frac{xy}{z^2}\), where \(x, y, z > 0\), the inequality becomes
\[
\sum \frac{x^4}{(x^2 + yz)^2} + \frac{2x^2y^2z^2}{(x^2 + yz)(y^2 + zx)(z^2 + xy)} \geq 1.
\]
Since \((x^2 + yz)^2 \leq (x^2 + y^2)(x^2 + z^2)\), we have
\[
\sum \frac{x^4}{(x^2 + yz)^2} \geq \sum \frac{x^4}{(x^2 + y^2)(x^2 + z^2)} = 1 - \frac{2x^2y^2z^2}{(x^2 + y^2)(y^2 + zx)(z^2 + xy)}.
\]
Then, it suffices to show that
\[
(x^2 + y^2)(y^2 + z^2)(z^2 + x^2) \geq (x^2 + yz)(y^2 + zx)(z^2 + xy).
\]
This inequality follows by multiplying the inequalities
\[
(x^2 + y^2)(x^2 + z^2) \geq (x^2 + yz)^2,
\]
\[
(y^2 + z^2)(y^2 + x^2) \geq (y^2 + zx)^2,
\]
\[
(z^2 + x^2)(z^2 + y^2) \geq (z^2 + xy)^2.
\]

Third Solution. We make the substitutions
\[
\frac{1}{1+a} = \frac{1+x}{2}, \quad \frac{1}{1+b} = \frac{1+y}{2}, \quad \frac{1}{1+c} = \frac{1+z}{2},
\]
that is,
\[
a = \frac{1-x}{1+x}, \quad b = \frac{1-y}{1+y}, \quad c = \frac{1-z}{1+z},
\]
where \(-1 < x, y, z < 1\). Since \(abc = 1\) involves \(x + y + z + xyz = 0\), we need to prove that
\[
x + y + z + xyz = 0
\]
implies
\[
(1 + x)^2 + (1 + y)^2 + (1 + z)^2 + (1 + x)(1 + y)(1 + z) \geq 4.
\]
This inequality is equivalent to
\[
x^2 + y^2 + z^2 + (x + y + z)^2 + 4(x + y + z) \geq 0.
\]
By virtue of the AM-GM inequality, we have
\[x^2 + y^2 + z^2 + (x + y + z)^2 + 4(x + y + z) = x^2 + y^2 + z^2 + x^2y^2z^2 - 4xyz \]
\[\geq 4\sqrt[4]{x^4y^4z^4} - 4xyz = 4|xyz| - 4xyz \geq 0. \]
\[\square \]

P 1.50. Let \(a, b, c \) be nonnegative real numbers such that
\[\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} = \frac{3}{2}. \]
Prove that
\[\frac{3}{a + b + c} \geq \frac{2}{ab + bc + ca} + \frac{1}{a^2 + b^2 + c^2}. \]

Solution. Write the inequality in the homogeneous form
\[\frac{2}{a + b + c} \left(\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} \right) \geq \frac{2}{ab + bc + ca} + \frac{1}{a^2 + b^2 + c^2}. \]
Denote \(q = ab + bc + ca \) and assume that \(a + b + c = 1 \). From the known inequality \((a + b + c)^2 \geq 3(ab + bc + ca) \), we get \(1 - 3q \geq 0 \). Rewrite the desired inequality as follows
\[2 \left(\frac{1}{1 - c} + \frac{1}{1 - a} + \frac{1}{1 - b} \right) \geq \frac{2}{q} + \frac{1}{1 - 2q}, \]
\[\frac{2(q + 1)}{q - abc} \geq \frac{2 - 3q}{q(1 - 2q)}; \]
\[q^2(1 - 4q) + (2 - 3q)abc \geq 0. \]
By Schur's inequality, we have
\[(a + b + c)^3 + 9abc \geq 4(a + b + c)(ab + bc + ca), \]
\[1 - 4q \geq -9abc. \]
Then,
\[q^2(1 - 4q) + (2 - 3q)abc \geq -9q^2abc + (2 - 3q)abc \]
\[= (1 - 3q)(2 + 3q)abc \geq 0. \]
The equality holds for \(a = b = c = 1 \), and for \(a = 0 \) and \(b = c = 5/3 \) (or any cyclic permutation). \[\square \]
P 1.51. Let a, b, c be nonnegative real numbers such that

$$7(a^2 + b^2 + c^2) = 11(ab + bc + ca).$$

Prove that

$$\frac{51}{28} \leq \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \leq 2.$$

Solution. Due to homogeneity, we may assume that $b+c = 2$. Let us denote $x = bc$, $0 \leq x \leq 1$. By the hypothesis $7(a^2 + b^2 + c^2) = 11(ab + bc + ca)$, we get

$$x = \frac{7a^2 - 22a + 28}{25}.$$

Then, $x \leq 1$ involves $1/7 \leq a \leq 3$. Since

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{a}{b+c} + \frac{a(b+c) + (b+c)^2 - 2bc}{a^2 + (b+c)a + bc} = \frac{a}{2} + \frac{2(a+2-x)}{a^2 + 2a + x} = \frac{4a^3 + 27a + 11}{8a^2 + 7a + 7},$$

the required inequalities become

$$\frac{51}{28} \leq \frac{4a^3 + 27a + 11}{8a^2 + 7a + 7} \leq 2.$$

We have

$$\frac{4a^3 + 27a + 11}{8a^2 + 7a + 7} - \frac{51}{28} = \frac{(7a-1)(4a-7)^2}{28(8a^2 + 7a + 7)} \geq 0$$

and

$$2 - \frac{4a^3 + 27a + 11}{8a^2 + 7a + 7} = \frac{(3-a)(2a-1)^2}{8a^2 + 7a + 7} \geq 0.$$

This completes the proof. The left inequality becomes an equality for $7a = b = c$ (or any cyclic permutation), while the right inequality is an equality for $a/3 = b = c$ (or any cyclic permutation).

□

P 1.52. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \geq \frac{10}{(a + b + c)^2}.$$
Solution. Assume that \(a = \min\{a, b, c\} \), and denote
\[
x = b + \frac{a}{2}, \quad y = c + \frac{a}{2},
\]
Since
\[
a^2 + b^2 \leq x^2, \quad b^2 + c^2 \leq x^2 + y^2, \quad c^2 + a^2 \leq y^2,
\]
\[
(a + b + c)^2 = (x + y)^2 \geq 4xy,
\]
it suffices to show that
\[
\frac{1}{x^2} + \frac{1}{x^2 + y^2} + \frac{1}{y^2} \geq \frac{5}{2xy}.
\]
We have
\[
\frac{1}{x^2} + \frac{1}{x^2 + y^2} + \frac{1}{y^2} = \frac{1}{x^2} + \frac{1}{y^2} - \frac{2}{xy} + \frac{1}{x^2 + y^2} - \frac{1}{2xy} = \frac{(x - y)^2}{x^2 y^2} - \frac{(x - y)^2}{2xy(x^2 + y^2)} = \frac{(x - y)^2(2x^2 - xy + 2y^2)}{2x^2 y^2(x^2 + y^2)} \geq 0.
\]
The equality holds for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square\]

P 1.53. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{a^2 - ab + b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} \geq \frac{3}{\max\{ab, bc, ca\}}.
\]

Solution. Assume that \(a = \min\{a, b, c\} \), hence \(bc = \max\{ab, bc, ca\} \). Since
\[
\frac{1}{a^2 - ab + b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} \geq \frac{1}{b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2},
\]
it suffices to show that
\[
\frac{1}{b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2} \geq \frac{3}{bc}.
\]
We have
\[
\frac{1}{b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2} - \frac{3}{bc} = \frac{(b - c)^4}{b^2 c^2 (b^2 - bc + c^2)} \geq 0.
\]
The equality holds for \(a = b = c \), and also \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square\]
P 1.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{a(2a + b + c)}{b^2 + c^2} + \frac{b(2b + c + a)}{c^2 + a^2} + \frac{c(2c + a + b)}{a^2 + b^2} \geq 6.$$

Solution. By the Cauchy-Schwarz inequality, we have

$$\sum a(2a + b + c) \geq \left(\sum a(2a + b + c)\right)^2 \sum a(2a + b + c)(b^2 + c^2).$$

Thus, we still need to show that

$$2\left(\sum a^2 + \sum ab\right)^2 \geq 3 \sum a(2a + b + c)(b^2 + c^2),$$

which is equivalent to

$$2 \sum a^4 + 2abc \sum a + \sum ab(a^2 + b^2) \geq 6 \sum a^2 b^2.$$

We can obtain this inequality by adding Schur’s inequality of degree four

$$\sum a^4 + abc \sum a \geq \sum ab(a^2 + b^2)$$

and

$$\sum ab(a^2 + b^2) \geq 2 \sum a^2 b^2,$$

multiplied by 2 and 3, respectively. The equality occurs for $a = b = c$, and for $a = 0$ and $b = c$ (or any cyclic permutation).

\[\square\]

P 1.55. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{a^2(b + c)^2}{b^2 + c^2} + \frac{b^2(c + a)^2}{c^2 + a^2} + \frac{c^2(a + b)^2}{a^2 + b^2} \geq 2(ab + bc + ca).$$

Solution. We apply the SOS method. Since

$$\frac{a^2(b + c)^2}{b^2 + c^2} = a^2 + \frac{2a^2bc}{b^2 + c^2},$$

we can write the inequality as

$$2\left(\sum a^2 - \sum ab\right) - \sum a^2 \left(1 - \frac{2bc}{b^2 + c^2}\right) \geq 0,$$
\[
\sum (b - c)^2 - \sum \frac{a^2(b - c)^2}{b^2 + c^2} \geq 0, \\
\sum \left(1 - \frac{a^2}{b^2 + c^2}\right) (b - c)^2 \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c\). Since \(1 - \frac{c^2}{a^2 + b^2} > 0\), it suffices to prove that
\[
\left(1 - \frac{a^2}{b^2 + c^2}\right) (b - c)^2 + \left(1 - \frac{b^2}{c^2 + a^2}\right) (a - c)^2 \geq 0,
\]
which is equivalent to
\[
\frac{(a^2 - b^2 + c^2)(a - c)^2}{a^2 + c^2} \geq \frac{(a^2 - b^2 - c^2)(b - c)^2}{b^2 + c^2}.
\]

This inequality follows by multiplying the inequalities
\[
a^2 - b^2 + c^2 \geq a^2 - b^2 - c^2, \quad \frac{(a - c)^2}{a^2 + c^2} \geq \frac{(b - c)^2}{b^2 + c^2}.
\]

The latter inequality is true since
\[
\frac{(a - c)^2}{a^2 + c^2} - \frac{(b - c)^2}{b^2 + c^2} = \frac{2bc}{b^2 + c^2} - \frac{2ac}{a^2 + c^2} = \frac{2c(a - b)(ab - c^2)}{(b^2 + c^2)(a^2 + c^2)} \geq 0.
\]

The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.56. If \(a, b, c\) are real numbers such that \(abc > 0\), then
\[
3 \sum \frac{a}{b^2 - bc + c^2} + 5\left(\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab}\right) \geq 8\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).
\]

(Vasile Cirtoaje, 2011)

Solution. In order to apply the SOS method, we multiply the inequality by \(abc\) and write it as follows:
\[
8(\sum a^2 - \sum bc) - 3 \sum a^2 \left(1 - \frac{bc}{b^2 - bc + c^2}\right) \geq 0, \\
4 \sum (b - c)^2 - 3 \sum \frac{a^2(b - c)^2}{b^2 - bc + c^2} \geq 0, \\
\sum \frac{(b - c)^2(4b^2 - 4bc + 4c^2 - 3a^2)}{b^2 - bc + c^2} \geq 0.
\]
Without loss of generality, assume that \(a \geq b \geq c \). Since
\[
4a^2 - 4ab + 4b^2 - 3c^2 = (2a - b)^2 + 3(b^2 - c^2) \geq 0,
\]
it suffices to prove that
\[
\frac{(a - c)^2(4a^2 - 4ac + 4c^2 - 3b^2)}{a^2 - ac + c^2} \geq \frac{(b - c)^2(3a^2 - 4b^2 + 4bc - 4c^2)}{b^2 - bc + c^2}.
\]
Notice that
\[
4a^2 - 4ac + 4c^2 - 3b^2 = (a - 2c)^2 + 3(a^2 - b^2) \geq 0.
\]
Thus, the desired inequality follows by multiplying the inequalities
\[
4a^2 - 4ac + 4c^2 - 3b^2 \geq 3a^2 - 4b^2 + 4bc - 4c^2
\]
and
\[
\frac{(a - c)^2}{a^2 - ac + c^2} \geq \frac{(b - c)^2}{b^2 - bc + c^2}.
\]
The first inequality is equivalent to
\[
(a - 2c)^2 + (b - 2c)^2 \geq 0.
\]
Also, we have
\[
\frac{(a - c)^2}{a^2 - ac + c^2} - \frac{(b - c)^2}{b^2 - bc + c^2} = \frac{bc}{b^2 - bc + c^2} - \frac{ac}{a^2 - ac + c^2} = \frac{bc - ac}{c(a - b)(ab - c^2)} \geq 0.
\]
The equality occurs for \(a = b = c \), and for \(2a = b = c \) (or any cyclic permutation).

P 1.57. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
(a) \quad 2abc \left(\frac{1}{a + b} + \frac{1}{b + c} + \frac{1}{c + a} \right) + a^2 + b^2 + c^2 \geq 2(ab + bc + ca);
\]

\[
(b) \quad \frac{a^2}{a + b} + \frac{b^2}{b + c} + \frac{c^2}{c + a} \leq \frac{3(a^2 + b^2 + c^2)}{2(a + b + c)}.
\]
Symmetric Rational Inequalities

Solution. (a) First Solution. We have

\[2abc \sum \frac{1}{b + c} + \sum a^2 = \sum \frac{a(2bc + ab + ac)}{b + c} \]
\[= \sum \frac{ab(a + c)}{b + c} + \sum \frac{ac(a + b)}{b + c} \]
\[= \sum \frac{ab(a + c)}{b + c} + \sum \frac{ba(b + c)}{c + a} \]
\[= \sum ab \left(\frac{a + c}{b + c} + \frac{b + c}{a + c} \right) \geq 2 \sum ab. \]

The equality occurs for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. Write the inequality as

\[\sum \left(\frac{2abc}{b + c} + a^2 - ab - ac \right) \geq 0. \]

We have

\[\sum \left(\frac{2abc}{b + c} + a^2 - ab - ac \right) = \sum \frac{ab(a - b) + ac(a - c)}{b + c} \]
\[= \sum \frac{ab(a - b)}{b + c} + \sum \frac{ba(b - a)}{c + a} \]
\[= \sum \frac{ab(a - b)^2}{(b + c)(c + a)} \geq 0. \]

(b) Since

\[\sum \frac{a^2}{a + b} = \sum \left(a - \frac{ab}{a + b} \right) = a + b + c - \sum \frac{ab}{a + b}, \]
we can write the desired inequality as

\[\sum \frac{ab}{a + b} + \frac{3(a^2 + b^2 + c^2)}{2(a + b + c)} \geq a + b + c. \]

Multiplying by 2(a + b + c), the inequality can be written as

\[2 \sum \left(1 + \frac{a}{b + c} \right) bc + 3(a^2 + b^2 + c^2) \geq 2(a + b + c)^2, \]

or

\[2abc \sum \frac{1}{b + c} + a^2 + b^2 + c^2 \geq 2(ab + bc + ca), \]

which is just the inequality in (a). \(\Box \)
P 1.58. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
\begin{align*}
(a) & \quad \frac{a^2 - bc}{b^2 + c^2} + \frac{b^2 - ca}{c^2 + a^2} + \frac{c^2 - ab}{a^2 + b^2} + \frac{3(ab + bc + ca)}{a^2 + b^2 + c^2} \geq 3; \\
(b) & \quad \frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} + \frac{ab + bc + ca}{a^2 + b^2 + c^2} \geq \frac{5}{2}; \\
(c) & \quad \frac{a^2 + bc}{b^2 + c^2} + \frac{b^2 + ca}{c^2 + a^2} + \frac{c^2 + ab}{a^2 + b^2} \geq \frac{ab + bc + ca}{a^2 + b^2 + c^2} + 2.
\end{align*}
\]

Solution. (a) Write the inequality as follows:

\[
\sum \left(\frac{2a^2}{b^2 + c^2} - 1 \right) + \sum \left(1 - \frac{2bc}{b^2 + c^2} \right) - 6 \left(1 - \frac{ab + bc + ca}{a^2 + b^2 + c^2} \right) \geq 0,
\]

\[
\sum \frac{2a^2 - b^2 - c^2}{b^2 + c^2} + \sum \frac{(b - c)^2}{b^2 + c^2} - 3 \sum \frac{(b - c)^2}{a^2 + b^2 + c^2} \geq 0.
\]

Since

\[
\sum \frac{2a^2 - b^2 - c^2}{b^2 + c^2} = \sum \frac{a^2 - b^2}{b^2 + c^2} + \sum \frac{a^2 - c^2}{b^2 + c^2} = \sum \frac{a^2 - b^2}{b^2 + c^2} + \sum \frac{b^2 - a^2}{c^2 + a^2}
\]

\[
= \sum \frac{(a^2 - b^2)^2}{(b^2 + c^2)(c^2 + a^2)} = \sum \frac{(b^2 - c^2)^2}{(a^2 + b^2)(a^2 + c^2)},
\]

we can write the inequality as

\[
\sum (b - c)^2 S_a \geq 0,
\]

where

\[
S_a = \frac{(b + c)^2}{(a^2 + b^2)(a^2 + c^2)} + \frac{1}{b^2 + c^2} - \frac{3}{a^2 + b^2 + c^2}.
\]

It suffices to show that \(S_a \geq 0 \) for all nonnegative real numbers \(a, b, c \), no two of which are zero. Denoting \(x^2 = b^2 + c^2 \), we have

\[
S_a = \frac{x^2 + 2bc}{a^4 + a^2x^2 + b^2c^2} + \frac{1}{x^2} - \frac{3}{a^2 + x^2},
\]

and the inequality \(S_a \geq 0 \) becomes

\[
(a^2 - 2x^2)b^2c^2 + 2x^2(a^2 + x^2)bc + (a^2 + x^2)(a^2 - x^2)^2 \geq 0.
\]

Clearly, this is true if

\[-2x^2b^2c^2 + 2x^4bc \geq 0.\]

(Vasile Cîrtoaje, 2014)
Indeed,
\[-2x^2b^2c^2 + 2x^4bc = 2x^2bc(x^2 - bc) = 2bc(b^2 + c^2)(b^2 + c^2 - bc) \geq 0.\]
The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

(b) First Solution. We get the desired inequality by summing the inequality in (a) and the inequality
\[
\frac{bc}{b^2 + c^2} + \frac{ca}{c^2 + a^2} + \frac{ab}{a^2 + b^2} + \frac{1}{2} \geq \frac{2(ab + bc + ca)}{a^2 + b^2 + c^2}.
\]
This inequality is equivalent to
\[
\sum \left(\frac{2bc}{b^2 + c^2} + 1 \right) \geq \frac{4(ab + bc + ca)}{a^2 + b^2 + c^2} + 2,
\]
and
\[
\sum \left(\frac{b + c}{b^2 + c^2} \right)^2 \geq \frac{2(a + b + c)^2}{a^2 + b^2 + c^2}.
\]
By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{(b + c)^2}{b^2 + c^2} \geq \left[\sum (b + c) \right]^2 \sum (b^2 + c^2) = \frac{2(a + b + c)^2}{a^2 + b^2 + c^2}.
\]
The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

Second Solution. Let
\[
p = a + b + c, \quad q = ab + bc + ca, \quad r = abc.
\]
By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{a^2}{b^2 + c^2} \geq \frac{\left(\sum a^2 \right)^2}{\sum a^2(b^2 + c^2)} = \frac{(p^2 - 2q)^2}{2(q^2 - 2pr)}.
\]
Therefore, it suffices to show that
\[
\frac{(p^2 - 2q)^2}{q^2 - 2pr} + \frac{2q}{p^2 - 2q} \geq 5. \tag{*}
\]
Consider the following cases: \(p^2 \geq 4q\) and \(3q \leq p^2 < 4q\).

Case 1: \(p^2 \geq 4q\). The inequality (*) is true if
\[
\frac{(p^2 - 2q)^2}{q^2} + \frac{2q}{p^2 - 2q} \geq 5,
\]
which is equivalent to the obvious inequality

\[(p^2 - 4q)[(p^2 - q)^2 - 2q^2] \geq 0.\]

Case 2: \(3q \leq p^2 < 4q\). Using Schur's inequality of degree four

\[6pq \geq (p^2 - q)(4q - p^2),\]

the inequality (*) is true if

\[
\frac{3(p^2 - 2q)^2}{3q^2 - (p^2 - q)(4q - p^2)} + \frac{2q}{p^2 - 2q} \geq 5,
\]

which is equivalent to the obvious inequality

\[(p^2 - 3q)(p^2 - 4q)(2p^2 - 5q) \leq 0.\]

Third Solution (by Nguyen Van Quy). Write the inequality (*) from the preceding solution as follows:

\[
\frac{(a^2 + b^2 + c^2)^2}{a^2b^2 + b^2c^2 + c^2a^2} + \frac{2(ab + bc + ca)}{a^2 + b^2 + c^2} \geq 5,
\]

\[
\frac{(a^2 + b^2 + c^2)^2}{a^2b^2 + b^2c^2 + c^2a^2} - 3 \geq 2 - \frac{2(ab + bc + ca)}{a^2 + b^2 + c^2},
\]

\[
\frac{a^4 + b^4 + c^4 - a^2b^2 - b^2c^2 - c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2} \geq \frac{2(a^2 + b^2 + c^2 - ab - bc - ca)}{a^2 + b^2 + c^2}.
\]

Since

\[2(a^2b^2 + b^2c^2 + c^2a^2) \leq \sum ab(a^2 + b^2) \leq (ab + bc + ca)(a^2 + b^2 + c^2),\]

it suffices to prove that

\[
\frac{a^4 + b^4 + c^4 - a^2b^2 - b^2c^2 - c^2a^2}{ab + bc + ca} \geq a^2 + b^2 + c^2 - ab - bc - ca,
\]

which is just Schur's inequality of degree four

\[a^4 + b^4 + c^4 + abc(a + b + c) \geq ab(a^2 + b^2) + bc(b^2 + c^2) + ca(c^2 + a^2).\]

(c) We get the desired inequality by summing the inequality in (a) and the inequality

\[
\frac{2bc}{b^2 + c^2} + \frac{2ca}{c^2 + a^2} + \frac{2ab}{a^2 + b^2} + 1 \geq \frac{4(ab + bc + ca)}{a^2 + b^2 + c^2},
\]

which is proved at (b). The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]
P 1.59. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} \geq \frac{(a + b + c)^2}{2(ab + bc + ca)}.
\]

Solution. Applying the Cauchy-Schwarz inequality, we have

\[
\sum \frac{a^2}{b^2 + c^2} \geq \frac{(\sum a^2)^2}{\sum a^2(b^2 + c^2)} = \frac{(a^2 + b^2 + c^2)^2}{2(a^2b^2 + b^2c^2 + c^2a^2)}.
\]

Therefore, it suffices to show that

\[
\frac{(a^2 + b^2 + c^2)^2}{2(a^2b^2 + b^2c^2 + c^2a^2)} \geq \frac{(a + b + c)^2}{2(ab + bc + ca)},
\]

which is equivalent to

\[
\frac{(a^2 + b^2 + c^2)^2}{a^2b^2 + b^2c^2 + c^2a^2} - 3 \geq \frac{(a + b + c)^2}{ab + bc + ca} - 3,
\]

\[
\frac{a^4 + b^4 + c^4 - a^2b^2 - b^2c^2 - c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2} \geq \frac{a^2b^2 + b^2c^2 - ab - bc - ca}{ab + bc + ca}.
\]

Since \(a^2b^2 + b^2c^2 + c^2a^2 \leq (ab + bc + ca)^2 \), it suffices to show that

\[
a^4 + b^4 + c^4 - a^2b^2 - b^2c^2 - c^2a^2 \geq (a^2 + b^2 + c^2 - ab - bc - ca)(ab + bc + ca),
\]

which is just Schur's inequality of degree four

\[
a^4 + b^4 + c^4 + abc(a + b + c) \geq ab(a^2 + b^2) + bc(b^2 + c^2) + ca(c^2 + a^2).
\]

The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square\]

P 1.60. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{2ab}{(a + b)^2} + \frac{2bc}{(b + c)^2} + \frac{2ca}{(c + a)^2} + \frac{a^2 + b^2 + c^2}{ab + bc + ca} \geq \frac{5}{2}.
\]

\[\text{(Vasile Cirtoaje, 2006)}\]
First Solution. We use the SOS method. Write the inequality as follows

\[\frac{a^2 + b^2 + c^2}{ab + bc + ca} - 1 \geq \sum \left(\frac{1}{2} - \frac{2bc}{(b + c)^2} \right), \]

\[\sum \frac{(b-c)^2}{ab + bc + ca} \geq \sum \frac{(b-c)^2}{(b + c)^2}, \]

\[(b-c)^2 S_a + (c-a)^2 S_b + (a-b)^2 S_c \geq 0, \]

where

\[S_a = 1 - \frac{ab + bc + ca}{(b + c)^2}, \quad S_b = 1 - \frac{ab + bc + ca}{(c + a)^2}, \quad S_c = 1 - \frac{ab + bc + ca}{(a + b)^2}. \]

Without loss of generality, assume that \(a \geq b \geq c \). We have \(S_c > 0 \) and \(S_b \geq 1 - \frac{(c + a)(c + b)}{(c + a)^2} = \frac{a - b}{c + a} \geq 0 \).

If \(b^2 S_a + a^2 S_b \geq 0 \), then

\[\sum (b-c)^2 S_a \geq (b-c)^2 S_a + (c-a)^2 S_b \geq (b-c)^2 S_a + \frac{a^2}{b^2} (b-c)^2 S_b \]

\[= \frac{(b-c)^2 (b^2 S_a + a^2 S_b)}{b^2} \geq 0. \]

We have

\[b^2 S_a + a^2 S_b = a^2 + b^2 - (ab + bc + ca) \left[\left(\frac{b}{b + c} \right)^2 + \left(\frac{a}{c + a} \right)^2 \right] \]

\[\geq a^2 + b^2 - (b + c)(c + a) \left[\left(\frac{b}{b + c} \right)^2 + \left(\frac{a}{c + a} \right)^2 \right] \]

\[= a^2 \left(1 - \frac{b + c}{c + a} \right) + b^2 \left(1 - \frac{c + a}{b + c} \right) \]

\[= \frac{(a - b)^2 (ab + bc + ca)}{(b + c)(c + a)} \geq 0. \]

The equality occurs for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. Multiplying by \(ab + bc + ca \), the inequality becomes

\[\sum \frac{2a^2 b^2}{(a + b)^2} + 2abc \sum \frac{1}{a + b} + a^2 + b^2 + c^2 \geq \frac{5}{2} (ab + bc + ca), \]

\[2abc \sum \frac{1}{a + b} + a^2 + b^2 + c^2 - 2(ab + bc + ca) - \sum \frac{1}{2} ab \left[1 - \sum \frac{4ab}{(a + b)^2} \right] \geq 0. \]
According to the second solution of P 1.57-(a), we can write the inequality as follows
\[
\sum \frac{ab(a-b)^2}{(b+c)(c+a)} - \sum \frac{ab(a-b)^2}{2(a+b)^2} \geq 0,
\]
\[(b-c)^2 S_a + (c-a)^2 S_b + (a-b)^2 S_c \geq 0,
\]
where
\[S_a = \frac{bc}{b+c}[2(b+c)^2 - (a+b)(a+c)].\]

Without loss of generality, assume that \(a \geq b \geq c\). We have \(S_c > 0\) and
\[S_b = \frac{2ac^2(a+c)}{a+c} \geq 0.
\]
If \(S_a + S_b \geq 0\), then
\[
\sum (b-c)^2 S_a + (c-a)^2 S_b \geq (b-c)^2(S_a + S_b) \geq 0.
\]
The inequality \(S_a + S_b \geq 0\) is true if
\[
\frac{ac}{a+c}[2(a+c)^2 - (a+b)(b+c)] \geq \frac{bc}{b+c}[(a+b)(a+c) - 2(b+c)^2].
\]
Since
\[
\frac{ac}{a+c} \geq \frac{bc}{b+c},
\]

it suffices to show that
\[2(a+c)^2 - (a+b)(b+c) \geq (a+b)(a+c) - 2(b+c)^2.
\]
This is true since is equivalent to
\[(a-b)^2 + 2c(a+b) + 4c^2 \geq 0.
\]

\[\square\]

P 1.61. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{ab}{(a+b)^2} + \frac{bc}{(b+c)^2} + \frac{ca}{(c+a)^2} + \frac{1}{4} \geq \frac{ab + bc + ca}{a^2 + b^2 + c^2}.
\]

\[(\text{Vasile Cîrtoaje, 2011)}\]
First Solution. We use the SOS method. Write the inequality as follows

\[
1 - \frac{ab + bc + ca}{a^2 + b^2 + c^2} \geq \sum \left[\frac{1}{4} - \frac{bc}{(b + c)^2} \right],
\]

\[
2 \sum \frac{(b - c)^2}{a^2 + b^2 + c^2} \geq \sum \frac{(b - c)^2}{(b + c)^2},
\]

\[
\sum (b - c)^2 \left[2 - \frac{a^2 + b^2 + c^2}{(b + c)^2} \right] \geq 0.
\]

Since

\[
2 - \frac{a^2 + b^2 + c^2}{(b + c)^2} = 1 + \frac{2bc - a^2}{(b + c)^2} \geq 1 - \left(\frac{a}{b + c} \right)^2,
\]

it suffices to show that

\[
(b - c)^2 S_a + (c - a)^2 S_b + (a - b)^2 S_c \geq 0,
\]

where

\[
S_a = 1 - \left(\frac{a}{b + c} \right)^2, \quad S_b = 1 - \left(\frac{b}{c + a} \right)^2, \quad S_c = 1 - \left(\frac{c}{a + b} \right)^2.
\]

Without loss of generality, assume that \(a \geq b \geq c\). Since \(S_b \geq 0\) and \(S_c > 0\), if \(b^2 S_a + a^2 S_b \geq 0\), then

\[
\sum (b - c)^2 S_a \geq (b - c)^2 S_a + (c - a)^2 S_b \geq (b - c)^2 S_a + \frac{a^2}{b^2} (b - c)^2 S_b
\]

\[
= \frac{(b - c)^2(b^2 S_a + a^2 S_b)}{b^2} \geq 0.
\]

We have

\[
b^2 S_a + a^2 S_b = a^2 + b^2 - \left(\frac{ab}{b + c} \right)^2 - \left(\frac{ab}{c + a} \right)^2
\]

\[
= a^2 \left[1 - \left(\frac{b}{b + c} \right)^2 \right] + b^2 \left[1 - \left(\frac{a}{c + a} \right)^2 \right] \geq 0.
\]

The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

Second Solution. Since \((a + b)^2 \leq 2(a^2 + b^2)\), it suffices to prove that

\[
\sum \frac{ab}{2(a^2 + b^2)} + \frac{1}{4} \geq \frac{ab + bc + ca}{a^2 + b^2 + c^2},
\]

which is equivalent to

\[
\sum \frac{2ab}{a^2 + b^2} + 1 \geq \frac{4(ab + bc + ca)}{a^2 + b^2 + c^2},
\]
\[
\sum \frac{(a + b)^2}{a^2 + b^2} \geq 2 + \frac{4(ab + bc + ca)}{a^2 + b^2 + c^2},
\]
\[
\sum \frac{(a + b)^2}{a^2 + b^2} \geq \frac{2(a + b + c)^2}{a^2 + b^2 + c^2}.
\]

The last inequality follows immediately by the Cauchy-Schwarz inequality
\[
\sum \frac{(a + b)^2}{a^2 + b^2} \geq \left(\sum (a + b)\right)^2 \sum (a^2 + b^2).
\]

Remark. The following generalization of the inequalities in P 1.60 and P 1.61 holds:
- Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(0 \leq k \leq 2\), then
\[
\sum \frac{4ab}{(a + b)^2} + k \frac{a^2 + b^2 + c^2}{ab + bc + ca} \geq 3k - 1 + 2(2 - k) \frac{ab + bc + ca}{a^2 + b^2 + c^2}.
\]

with equality for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.62. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{3ab}{(a + b)^2} + \frac{3bc}{(b + c)^2} + \frac{3ca}{(c + a)^2} \leq \frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{5}{4}.
\]

(Vasile Cîrtoaje, 2011)

Solution. We use the SOS method. Write the inequality as follows
\[
3 \sum \left[\frac{1}{4} - \frac{bc}{(b + c)^2}\right] \geq 1 - \frac{ab + bc + ca}{a^2 + b^2 + c^2},
\]
\[
3 \sum \frac{(b - c)^2}{(b + c)^2} \geq 2 \sum \frac{(b - c)^2}{a^2 + b^2 + c^2},
\]
\[
(b - c)^2 S_a + (c - a)^2 S_b + (a - b)^2 S_c \geq 0,
\]

where
\[
S_a = \frac{3(a^2 + b^2 + c^2)}{(b + c)^2} - 2, \quad S_b = \frac{3(a^2 + b^2 + c^2)}{(c + a)^2} - 2, \quad S_c = \frac{3(a^2 + b^2 + c^2)}{(a + b)^2} - 2.
\]

Without loss of generality, assume that \(a \geq b \geq c\). Since \(S_a > 0\) and
\[
S_b = \frac{a^2 + 3b^2 + c^2 - 4ac}{(c + a)^2} = \frac{(a - 2c)^2 + 3(b^2 - c^2)}{(c + a)^2} > 0,
\]
if \(S_b + S_c \geq 0 \), then

\[
\sum (b-c)^2 S_a \geq (c-a)^2 S_b + (a-b)^2 S_c \geq (a-b)^2 (S_b + S_c) \geq 0.
\]

Using the Cauchy-Schwarz Inequality, we have

\[
S_b + S_c = 3(a^2 + b^2 + c^2) \left[\frac{1}{(c+a)^2} + \frac{1}{(a+b)^2} \right] - 4 \\
\geq \frac{12(a^2 + b^2 + c^2)}{(c+a)^2 + (a+b)^2} - 4 = \frac{4(a-b-c)^2 + 4(b-c)^2}{(c+a)^2 + (a+b)^2} \geq 0.
\]

The equality occurs for \(a = b = c \), and for \(\frac{a}{2} = b = c \) (or any cyclic permutation).

P 1.63. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
\begin{align*}
(a) \quad \frac{a^3 + abc}{b+c} + \frac{b^3 + abc}{c+a} + \frac{c^3 + abc}{a+b} & \geq a^2 + b^2 + c^2; \\
(b) \quad \frac{a^3 + 2abc}{b+c} + \frac{b^3 + 2abc}{c+a} + \frac{c^3 + 2abc}{a+b} & \geq \frac{1}{2}(a+b+c)^2; \\
(c) \quad \frac{a^3 + 3abc}{b+c} + \frac{b^3 + 3abc}{c+a} + \frac{c^3 + 3abc}{a+b} & \geq 2(ab + bc + ca).
\end{align*}
\]

Solution. (a) First Solution. Write the inequality as

\[
\sum \left(\frac{a^3 + abc}{b+c} - a^2 \right) \geq 0,
\]

\[
\sum \frac{a(a-b)(a-c)}{b+c} \geq 0.
\]

Assume that \(a \geq b \geq c \). Since \((c-a)(c-b) \geq 0\) and

\[
\frac{a(a-b)(a-c)}{b+c} + \frac{b(b-c)(b-a)}{b+c} = \frac{(a-b)^2(a^2 + b^2 + c^2 + ab)}{(b+c)(c+a)} \geq 0,
\]

the conclusion follows. The equality occurs for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

(b) Taking into account the inequality in (a), it suffices to show that

\[
\frac{abc}{b+c} + \frac{abc}{c+a} + \frac{abc}{a+b} + a^2 + b^2 + c^2 \geq \frac{1}{2}(a+b+c)^2,
\]
which is just the inequality (a) from P 1.57. The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

(c) The desired inequality follows by adding the inequality in (a) to the inequality (a) from P 1.57. The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.64. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{a^3 + 3abc}{(b + c)^2} + \frac{b^3 + 3abc}{(c + a)^2} + \frac{c^3 + 3abc}{(a + b)^2} \geq a + b + c.
\]

(Vasile Cîrtoaje, 2005)

Solution. We use the SOS method. We have

\[
\sum_a \frac{a^3 + 3abc}{(b + c)^2} - \sum_a = \sum_a \left[\frac{a^3 + 3abc}{(b + c)^2} - a \right] = \sum \frac{a^3 - a(b^2 - bc + c^2)}{(b + c)^2}
\]

\[
= \sum \frac{a^3(b + c) - a(b^3 + c^3)}{(b + c)^3} = \sum \frac{ab(a^2 - b^2) + ac(a^2 - c^2)}{(b + c)^3}
\]

\[
= \sum \frac{ab(a^2 - b^2)}{(b + c)^3} + \sum \frac{ba(b^2 - a^2)}{(c + a)^3} = \sum \frac{ab(a^2 - b^2)((c + a)^3 - (b + c)^3)}{(b + c)^3(c + a)^3}
\]

\[
= \sum \frac{ab(a + b)(a - b)^2[(c + a)^2 + (c + a)(b + c) + (b + c)^2]}{(b + c)^2(c + a)^3} \geq 0.
\]

The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.65. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

(a) \[
\frac{a^3 + 3abc}{(b + c)^3} + \frac{b^3 + 3abc}{(c + a)^3} + \frac{c^3 + 3abc}{(a + b)^3} \geq \frac{3}{2};
\]

(b) \[
\frac{3a^2 + 13abc}{(b + c)^3} + \frac{3b^2 + 13abc}{(c + a)^3} + \frac{3c^2 + 13abc}{(a + b)^3} \geq 6.
\]

(Vasile Cîrtoaje and Ji Chen, 2005)
Solution. (a) First Solution. Use the SOS method. We have
\[
\sum \frac{a^3 + 3abc}{(b+c)^3} = \sum a(b+c)^2 + a(a^2 + bc - b^2 - c^2)
\]
\[
= \sum \frac{a}{b+c} + \sum \frac{a^3 - a(b^2 - bc + c^2)}{(b+c)^3}
\]
\[
\geq \frac{3}{2} + \sum \frac{a^3(b+c) - a(b^3 + c^3)}{(b+c)^4}
\]
\[
= \frac{3}{2} + \sum \frac{ab(a^2 - b^2) + ac(a^2 - c^2)}{(b+c)^4}
\]
\[
= \frac{3}{2} + \sum \frac{ab(a^2 - b^2)}{(b+c)^4} + \sum \frac{ba(b^2 - a^2)}{(c+a)^4}
\]
\[
= \frac{3}{2} + \sum \frac{ab(a+b)(a-b)(c+a)(c+b)}{(b+c)^4(c+a)^4} \geq 0.
\]
The equality occurs for \(a = b = c\).

Second Solution. Assume that \(a \geq b \geq c\). Since
\[
\frac{a^3 + 3abc}{b+c} \geq \frac{b^3 + 3abc}{c+ac} \geq \frac{c^3 + 3abc}{a+b}
\]
and
\[
\frac{1}{(b+c)^2} \geq \frac{1}{(c+a)^2} \geq \frac{1}{(a+b)^2},
\]
by Chebyshev’s inequality, we get
\[
\sum \frac{a^3 + 3abc}{(b+c)^3} \geq \frac{1}{3} \left(\sum \frac{a^3 + 3abc}{b+c} \right) \sum \frac{1}{(b+c)^2}.
\]
Thus, it suffices to show that
\[
\left(\sum \frac{a^3 + 3abc}{b+c} \right) \sum \frac{1}{(b+c)^2} \geq \frac{9}{2}.
\]
We can obtain this inequality by multiplying the known inequality (Iran-1996)
\[
\sum \frac{1}{(b+c)^2} \geq \frac{9}{4(ab+bc+ca)}
\]
and the inequality (c) from P 1.63.

(b) We have
\[
\sum \frac{3a^3 + 13abc}{(b+c)^3} = \sum \frac{3a(b+c)^2 + 4abc + 3a(a^2 + bc - b^2 - c^2)}{(b+c)^3}
\]
Symmetric Rational Inequalities 103

\[\sum \frac{3a}{b+c} + 4abc \sum \frac{1}{(b+c)^3} + 3 \sum \frac{a^3 - a(b^2 - bc + c^2)}{(b+c)^3}. \]

Since

\[\sum \frac{1}{(b+c)^3} \geq \frac{3}{(a+b)(b+c)(c+a)} \]

and

\[\sum \frac{a^3 - a(b^2 - bc + c^2)}{(b+c)^3} = \sum \frac{a^3(b+c) - a(b^3 + c^3)}{(b+c)^4} = \sum \frac{ab(a^2 - b^2) + ac(a^2 - c^2)}{(b+c)^4} = \sum \frac{ba(b^2 - a^2)}{(c+a)^4} \]

\[= \sum \frac{ab(a+b)(a-b)[(c+a)^3 - (b+c)^4]}{b(c+a)^4} \geq 0, \]

it suffices to prove that

\[\sum \frac{3a}{b+c} + \frac{12abc}{(a+b)(b+c)(c+a)} \geq 6. \]

This inequality is equivalent to the third degree Schur’s inequality

\[a^3 + b^3 + c^3 + 3abc \geq \sum ab(a+b). \]

The equality occurs for \(a = b = c, \) and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square \]

P 1.66. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

(a) \[\frac{a^3}{b+c} + \frac{b^3}{c+a} + \frac{c^3}{a+b} + ab + bc + ca \geq \frac{3}{2}(a^2 + b^2 + c^2); \]

(b) \[\frac{2a^2 + bc}{b+c} + \frac{2b^2 + ca}{c+a} + \frac{2c^2 + ab}{a+b} \geq \frac{9(a^2 + b^2 + c^2)}{2(a+b+c)}. \]

(Vasile Cîrtoaje, 2006)

Solution. (a) We apply the SOS method. Write the inequality as

\[\sum \left(\frac{2a^3}{b+c} - a^2 \right) \geq \sum (a-b)^2. \]

Since

\[\sum \left(\frac{2a^3}{b+c} - a^2 \right) = \sum \frac{a^2(a-b) + a^2(a-c)}{b+c} \]
\[\sum \frac{a^2(a-b)}{b+c} + \sum \frac{b^2(b-a)}{c+a} = \sum \frac{(a-b)^2(a^2+b^2+ab+bc+ca)}{(b+c)(c+a)}, \]

we can write the inequality as

\[(b-c)^2S_a + (c-a)^2S_b + (a-b)^2S_c \geq 0, \]

where

\[S_a = (b+c)(b^2+c^2-a^2), \quad S_b = (c+a)(c^2+a^2-b^2), \quad S_c = (a+b)(a^2+b^2-c^2). \]

Without loss of generality, assume that \(a \geq b \geq c \). Since \(S_b \geq 0, S_c \geq 0, \) and \(S_a + S_b = (a+b)(a-b)^2 + c^2(a+b+2c) \geq 0, \)

we have

\[\sum (b-c)^2S_a \geq (b-c)^2S_a + (a-c)^2S_b \geq (b-c)^2(S_a + S_b) \geq 0. \]

The equality occurs for \(a = b = c, \) and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

(b) Multiplying by \(a + b + c, \) the inequality can be written as

\[\sum \left(1 + \frac{a}{b+c} \right)(2a^2+bc) \geq \frac{9}{2}(a^2+b^2+c^2), \]

or

\[\sum \frac{2a^3+abc}{b+c} + ab+bc+ca \geq \frac{5}{2}(a^2+b^2+c^2). \]

This inequality follows using the inequality in (a) and the first inequality from P 1.57.

The equality occurs for \(a = b = c, \) and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square \]

P 1.67. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[\frac{a(b+c)}{b^2+bc+c^2} + \frac{b(c+a)}{c^2+ca+a^2} + \frac{c(a+b)}{a^2+ab+b^2} \geq 2. \]

First Solution. Apply the SOS method. We have

\[(a+b+c) \left[\sum \frac{a(b+c)}{b^2+bc+c^2} - 2 \right] = \sum \left[\frac{a(b+c)(a+b+c)}{b^2+bc+c^2} - 2a \right] \]

\[= \sum \frac{a(ab+ac-b^2-c^2)}{b^2+bc+c^2} = \sum \frac{ab(a-b)-ca(c-a)}{b^2+bc+c^2} \]
\[
\sum \frac{ab(a-b)}{b^2+bc+c^2} - \sum \frac{ab(a-b)}{c^2+ca+a^2}
= (a+b+c) \sum \frac{ab(a-b)^2}{(b^2+bc+c^2)(c^2+ca+a^2)} \geq 0.
\]

The equality occurs for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. By the AM-GM inequality, we have

\[
4(b^2+bc+c^2)(ab+bc+ca) \leq (b^2+bc+c^2 + ab+bc+ca)^2 = (b+c)^2(a+b+c)^2.
\]

Thus,

\[
\sum \frac{a(b+c)}{b^2+bc+c^2} = \sum \frac{a(b+c)(ab+bc+ca)}{(b^2+bc+c^2)(ab+bc+ca)}
\geq \sum \frac{4a(ab+bc+ca)}{(b+c)(a+b+c)^2} = \frac{4(ab+bc+ca)}{(a+b+c)^2} \sum \frac{a}{b+c},
\]

and it suffices to show that

\[
\sum \frac{a}{b+c} \geq \frac{(a+b+c)^2}{2(ab+bc+ca)}.
\]

This follows immediately from the Cauchy-Schwarz inequality

\[
\sum \frac{a}{b+c} \geq \frac{(a+b+c)^2}{\sum a(b+c)}.
\]

Third Solution. By the Cauchy-Schwarz inequality, we have

\[
\sum \frac{a(b+c)}{b^2+bc+c^2} \geq \frac{(a+b+c)^2}{\sum \frac{a(b^2+bc+c^2)}{b+c}},
\]

Thus, it is enough to show that

\[
(a+b+c)^2 \geq 2 \sum \frac{a(b^2+bc+c^2)}{b+c}.
\]

Since

\[
\frac{a(b^2+bc+c^2)}{b+c} = a\left(b+c - \frac{bc}{b+c}\right) = ab + ca - \frac{abc}{b+c},
\]

this inequality is equivalent to

\[
2abc \left(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}\right) + a^2 + b^2 + c^2 \geq 2(ab+bc+ca),
\]

which is just the inequality (a) from P 1.57.
Fourth Solution. By direct calculation, we can write the inequality as
\[\sum ab(a^4 + b^4) \geq \sum a^2 b^2 (a^2 + b^2), \]
which is equivalent to the obvious inequality
\[\sum ab(a - b)(a^3 - b^3) \geq 0. \]

\[\blacksquare \]

P 1.68. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[\frac{a(b + c)}{b^2 + bc + c^2} + \frac{b(c + a)}{c^2 + ca + a^2} + \frac{c(a + b)}{a^2 + ab + b^2} \geq 2 + 4 \prod \left(\frac{a - b}{a + b}\right)^2. \]

(Vasile Cirtoaje, 2011)

Solution. For \(b = c = 1 \), the inequality reduces to \(a(a - 1)^2 \geq 0 \). Assume further that \(a < b < c \). According to the first solution of P 1.67, we have
\[\sum \frac{a(b + c)}{b^2 + bc + c^2} - 2 = \sum \frac{bc(b - c)^2}{(a^2 + ab + b^2)(a^2 + ac + c^2)}. \]
Therefore, it remains to show that
\[\sum \frac{bc(b - c)^2}{(a^2 + ab + b^2)(a^2 + ac + c^2)} \geq 4 \prod \left(\frac{a - b}{a + b}\right)^2. \]
Since
\[(a^2 + ab + b^2)(a^2 + ac + c^2) \leq (a + b)^2(a + c)^2, \]
it suffices to show that
\[\sum \frac{bc(b - c)^2}{(a + b)^2(a + c)^2} \geq 4 \prod \frac{(a - b)^2}{(a + b)^2}, \]
which is equivalent to
\[\sum \frac{bc(b + c)^2}{(a - b)^2(a - c)^2} \geq 4. \]
We have
\[\sum \frac{bc(b + c)^2}{(a - b)^2(a - c)^2} \geq \frac{bc(b + c)^2}{(a - b)^2(a - c)^2} \geq \frac{bc(b + c)^2}{b^2 c^2} = \frac{(b + c)^2}{bc} \geq 4. \]
The equality occurs for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation). \[\blacksquare \]
P 1.69. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{ab - bc + ca}{b^2 + c^2} + \frac{bc - ca + ab}{c^2 + a^2} + \frac{ca - ab + bc}{a^2 + b^2} \geq \frac{3}{2}.
\]

Solution. Use the SOS method. We have

\[
\sum \left(\frac{ab - bc + ca}{b^2 + c^2} - \frac{1}{2} \right) = \sum \frac{(b + c)(2a - b - c)}{2(b^2 + c^2)}
\]

\[
= \sum \frac{(b + c)(a - b)}{2(b^2 + c^2)} + \sum \frac{(b + c)(a - c)}{2(b^2 + c^2)}
\]

\[
= \sum \frac{(b + c)(a - b)}{2(b^2 + c^2)} + \sum \frac{(c + a)(b - a)}{2(c^2 + a^2)}
\]

\[
= \sum \frac{(a - b)^2(ab + bc + ca - c^2)}{2(b^2 + c^2)(c^2 + a^2)}.
\]

Since

\[
ab + bc + ca - c^2 = (b - c)(c - a) + 2ab \geq (b - c)(c - a),
\]

it suffices to show that

\[
\sum (a^2 + b^2)(a - b)^2(b - c)(c - a) \geq 0.
\]

This inequality is equivalent to

\[
(a - b)(b - c)(c - a) \sum (a - b)(a^2 + b^2) \geq 0,
\]

or

\[
(a - b)^2(b - c)^2(c - a)^2 \geq 0.
\]

The equality occurs for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation). \(\square\)

P 1.70. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(k > -2\), then

\[
\sum \frac{ab + (k-1)bc + ca}{b^2 + kbc + c^2} \geq \frac{3(k+1)}{k+2}.
\]

(Vasile Cîrtoaje, 2005)
First Solution. Apply the SOS method. Write the inequality as
\[
\sum ab + \left(k - 1 \right) bc + ca \geq \frac{k + 1}{k + 2},
\]
\[
\sum \frac{A}{b^2 + kbc + c^2} \geq 0,
\]
where
\[
A = (b + c)(2a - b - c) + k(ab + ac - b^2 - c^2).
\]
Since
\[
A = (b + c)[(a - b) + (a - c)] + k[b(a - b) + c(a - c)]
\]
\[
= (a - b)[(k + 1)b + c] + (a - c)[(k + 1)c + b],
\]
the inequality is equivalent to
\[
\sum \frac{(a - b)[(k + 1)b + c]}{b^2 + kbc + c^2} + \sum \frac{(a - c)[(k + 1)c + b]}{b^2 + kbc + c^2} \geq 0,
\]
\[
\sum \frac{(a - b)[(k + 1)b + c]}{b^2 + kbc + c^2} + \sum \frac{(b - a)[(k + 1)a + c]}{c^2 + kca + a^2} \geq 0,
\]
\[
\sum (b - c)^2 R_a S_a \geq 0,
\]
where
\[
R_a = b^2 + kbc + c^2, \quad S_a = a(b + c - a) + (k + 1)bc.
\]
Without loss of generality, assume that \(a \geq b \geq c \).

Case 1: \(k \geq -1 \). Since \(S_a \geq a(b + c - a) \), it suffices to show that
\[
\sum a(b + c - a)(b - c)^2 R_a \geq 0.
\]
We have
\[
\sum a(b + c - a)(b - c)^2 R_a \geq a(b + c - a)(b - c)^2 R_a + b(c + a - b)(c - a)^2 R_b
\]
\[
\geq (b - c)^2 [a(b + c - a)R_a + b(c + a - b)R_b].
\]
Thus, it is enough to prove that
\[
a(b + c - a)R_a + b(c + a - b)R_b \geq 0.
\]
Since \(b + c - a \geq -(c + a - b) \), we have
\[
a(b + c - a)R_a + b(c + a - b)R_b \geq (c + a - b)(bR_b - aR_a)
\]
\[
= (c + a - b)(a - b)(ab - c^2) \geq 0.
\]
Case 2: $-2 < k \leq 1$. Since
\[S_a = (a - b)(c - a) + (k + 2)bc \geq (a - b)(c - a), \]
we have
\[\sum (b - c)^2 R_a S_a \geq (a - b)(b - c)(c - a) \sum (b - c)R_a. \]
From
\[\sum (b - c)R_a = \sum (b - c)[b^2 + bc + c^2 - (1 - k)bc] \]
\[= \sum (b^3 - c^3) - (1 - k) \sum bc(b - c) \]
\[= (1 - k)(a - b)(b - c)(c - a), \]
we get
\[(a - b)(b - c)(c - a) \sum (b - c)R_a = (1 - k)(a - b)^2(b - c)^2(c - a)^2 \geq 0. \]
This completes the proof. The equality occurs for $a = b = c$, and for $a = 0$ and $b = c$
(or any cyclic permutation).

Second Solution. Let $p = a + b + c$, $q = ab + bc + ca$, $r = abc$. Write the inequality in
the form $f_6(a, b, c) \geq 0$, where
\[f_6(a, b, c) = (k + 2) \sum [a(b + c) + (k - 1)bc](a^2 + kab + b^2)(a^2 + kac + c^2) \]
\[-3(k + 1) \prod (b^2 + kbc + c^2) \]
\[= (k + 2) \sum [(k - 2)bc + q](kab - c^2 + p^2 - 2q)(kac - b^2 + p^2 - 2q) \]
\[-3(k + 1) \prod (kbc - a^2 + p^2 - 2q). \]
Thus, $f_6(a, b, c)$ has the same highest coefficient A as
\[(k + 2)(k - 2)P_2(a, b, c) - 3(k + 1)P_3(a, b, c), \]
where
\[P_2(a, b, c) = \sum bc(kab - c^2)(kac - b^2), \]
\[P_3(a, b, c) = \prod (kbc - a^2). \]
According to Remark 2 from P 1.75 in Volume 1,
\[A = (k + 2)(k - 2)P_2(1, 1, 1) - 3(k + 1)P_3(1, 1, 1) \]
\[= 3(k + 2)(k - 2)(k - 1)^2 - 3(k + 1)(k - 1)^3 = -9(k - 1)^2. \]
Since $A \leq 0$, according to P 2.76-(a) in Volume 1, it suffices to prove the original inequality for $b = c = 1$, and for $a = 0$. For these cases, this inequality has the obvious forms

$$(k + 2)a(a - 1)^2 \geq 0$$

and

$$(b - c)^2[(k + 2)(b^2 + c^2) + (k^2 + k + 1)bc] \geq 0,$$

respectively.

Remark. For $k = 1$ and $k = 0$, from P 1.70, we get the inequalities in P 1.67 and P 1.69, respectively. Besides, for $k = 2$, we get the well-known inequality (Iran 1996):

$$\sum \frac{1}{(a + b)^2} + \frac{1}{(b + c)^2} + \frac{1}{(c + a)^2} \geq \frac{9}{4(ab + bc + ca)}.$$

\[\square\]

P 1.71. Let a, b, c be nonnegative real numbers, no two of which are zero. If $k > -2$, then

$$\sum \frac{3bc - a(b + c)}{b^2 + kbc + c^2} \leq \frac{3}{k + 2}.$$

(Vasile Cîrtoaje, 2011)

Solution. Write the inequality in P 1.70 as

$$\sum \left[1 - \frac{ab + (k - 1)bc + ca}{b^2 + kbc + c^2}\right] \leq \frac{3}{k + 2},$$

$$\sum \frac{b^2 + c^2 + bc - a(b + c)}{b^2 + kbc + c^2} \leq \frac{3}{k + 2}.$$

Since $b^2 + c^2 \geq 2bc$, we get

$$\sum \frac{3bc - a(b + c)}{b^2 + kbc + c^2} \leq \frac{3}{k + 2},$$

which is just the desired inequality. The equality occurs for $a = b = c$.

\[\square\]

P 1.72. Let a, b, c be nonnegative real numbers such that $ab + bc + ca = 3$. Prove that

$$\frac{ab + 1}{a^2 + b^2} + \frac{bc + 1}{b^2 + c^2} + \frac{ca + 1}{c^2 + a^2} \geq \frac{4}{3}.$$
Symmetric Rational Inequalities

Solution. Write the inequality in the homogeneous form $E(a, b, c) \geq 4$, where

$$E(a, b, c) = \frac{4ab + bc + ca}{a^2 + b^2} + \frac{4bc + ca + ab}{b^2 + c^2} + \frac{4ca + ab + bc}{c^2 + a^2}.$$

Without loss of generality, assume that $a = \min\{a, b, c\}$. We will show that

$$E(a, b, c) \geq E(0, b, c) \geq 4.$$

For $a = 0$, we have $E(a, b, c) = E(0, b, c)$, and for $a > 0$, we have

$$\frac{E(a, b, c) - E(0, b, c)}{a} = \frac{4b^2 + c(b - a)}{b(a^2 + b^2)} + \frac{b + c}{b^2 + c^2} + \frac{4c^2 + b(c - a)}{c(c^2 + a^2)} > 0.$$

Also,

$$E(0, b, c) - 4 = \frac{b}{c} + \frac{4bc}{b^2 + c^2} + \frac{c}{b} - 4 = \frac{(b - c)^4}{bc(b^2 + c^2)} \geq 0.$$

The equality holds for $a = 0$ and $b = c = \sqrt{3}$ (or any cyclic permutation).

\[\square\]

P 1.73. Let a, b, c be nonnegative real numbers such that $ab + bc + ca = 3$. Prove that

$$\frac{5ab + 1}{(a + b)^2} + \frac{5bc + 1}{(b + c)^2} + \frac{5ca + 1}{(c + a)^2} \geq 2.$$

Solution. Write the inequality as $E(a, b, c) \geq 6$, where

$$E(a, b, c) = \frac{16ab + bc + ca}{(a + b)^2} + \frac{16bc + ca + ab}{(b + c)^2} + \frac{16ca + ab + bc}{(c + a)^2}.$$

Without loss of generality, assume that $a \leq b \leq c$.

Case 1: $16b^2 \geq c(a + b)$. We will show that

$$E(a, b, c) \geq E(0, b, c) \geq 6.$$

For $a = 0$, we have $E(a, b, c) = E(0, b, c)$, and for $a > 0$, we have

$$\frac{E(a, b, c) - E(0, b, c)}{a} = \frac{16b^2 - c(a + b)}{b(a + b)^2} + \frac{1}{b + c} + \frac{16c^2 - b(a + c)}{c(c + a)^2} > 0.$$

Also,

$$E(0, b, c) - 6 = \frac{b}{c} + \frac{16bc}{(b + c)^2} + \frac{c}{b} - 6 = \frac{(b - c)^4}{bc(b + c)^2} \geq 0.$$
Case 2: \(16b^2 < c(a + b)\). We have
\[
E(a, b, c) - 6 > \frac{16ab + bc + ca}{(a + b)^2} - 6 > \frac{16ab + 16b^2}{(a + b)^2} - 6 = \frac{2(5b - 3a)}{a + b} > 0.
\]
The equality holds for \(a = 0\) and \(b = c = \sqrt{3}\) (or any cyclic permutation).

\(\square\)

P 1.74. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{a^2 - bc}{2b^2 - 3bc + 2c^2} + \frac{b^2 - ca}{2c^2 - 3ca + 2a^2} + \frac{c^2 - ab}{2a^2 - 3ab + 2b^2} \geq 0.
\]

\(\text{(Vasile Cîrtoaje, 2005)}\)

Solution. The hint is applying the Cauchy-Schwarz inequality after we made the numerators of the fractions to be nonnegative and as small as possible. Thus, we write the inequality as
\[
\sum \left(\frac{a^2 - bc}{2b^2 - 3bc + 2c^2} + 1 \right) \geq 3,
\]
\[
\sum \frac{a^2 + 2(b - c)^2}{2b^2 - 3bc + 2c^2} \geq 3.
\]
Using the Cauchy-Schwarz inequality
\[
\sum \frac{a^2 + 2(b - c)^2}{2b^2 - 3bc + 2c^2} \geq \frac{(5 \sum a^2 - 4 \sum ab)^2}{\sum [a^2 + 2(b - c)^2](2b^2 - 3bc + 2c^2)},
\]
it suffices to prove that
\[
(5 \sum a^2 - 4 \sum ab)^2 \geq 3 \sum [a^2 + 2(b - c)^2](2b^2 - 3bc + 2c^2).
\]
This inequality is equivalent to
\[
\sum a^4 + abc \sum a + 2 \sum ab(a^2 + b^2) \geq 6 \sum a^2b^2.
\]
We can obtain it by summing Schur’s inequality of degree four
\[
\sum a^4 + abc \sum a \geq \sum ab(a^2 + b^2)
\]
to the obvious inequality
\[
3 \sum ab(a^2 + b^2) \geq 6 \sum a^2b^2.
\]
The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\(\square\)
P 1.75. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{2a^2 - bc}{b^2 - bc + c^2} + \frac{2b^2 - ca}{c^2 - ca + a^2} + \frac{2c^2 - ab}{a^2 - ab + b^2} \geq 3.$$

(Vasile Cîrtoaje, 2005)

Solution. Write the inequality such that the numerators of the fractions are nonnegative and as small as possible:

$$\sum \left(\frac{2a^2 - bc}{b^2 - bc + c^2} + 1 \right) \geq 6,$$

$$\sum \frac{2a^2 + (b-c)^2}{b^2 - bc + c^2} \geq 6.$$

Applying the Cauchy-Schwarz inequality, we get

$$\sum \frac{2a^2 + (b-c)^2}{b^2 - bc + c^2} \geq \frac{4(2\sum a^2 - \sum ab)^2}{\sum [2a^2 + (b-c)^2](b^2 - bc + c^2)}.$$

Thus, we still have to prove that

$$2(2\sum a^2 - \sum ab)^2 \geq 3 \sum [2a^2 + (b-c)^2](b^2 - bc + c^2).$$

This inequality is equivalent to

$$2 \sum a^4 + 2abc \sum a + \sum ab(a^2 + b^2) \geq 6 \sum a^2 b^2.$$

We can obtain it by summing up Schur’s inequality of degree four

$$\sum a^4 + abc \sum a \geq \sum ab(a^2 + b^2)$$

and

$$\sum ab(a^2 + b^2) \geq 2 \sum a^2 b^2,$$

multiplied by 2 and 3, respectively. The equality holds for $a = b = c$, and for $a = 0$ and $b = c$ (or any cyclic permutation).

P 1.76. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{a^2}{2b^2 - bc + 2c^2} + \frac{b^2}{2c^2 - ca + 2a^2} + \frac{c^2}{2a^2 - ab + 2b^2} \geq 1.$$

(Vasile Cîrtoaje, 2005)
Solution. By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{a^2}{2b^2 - bc + 2c^2} \geq \frac{(\sum a^2)^2}{\sum a^2(2b^2 - bc + 2c^2)}.
\]
Therefore, it suffices to show that
\[
(\sum a^2)^2 \geq \sum a^2(2b^2 - bc + 2c^2),
\]
which is equivalent to
\[
\sum a^4 + abc \sum a \geq 2 \sum a^2 b^2.
\]
This inequality follows by adding Schur's inequality of degree four
\[
\sum a^4 + abc \sum a \geq \sum ab(a^2 + b^2)
\]
and
\[
\sum ab(a^2 + b^2) \geq 2 \sum a^2 b^2.
\]
The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.77. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{4b^2 - bc + 2c^2} + \frac{1}{4c^2 - ca + 2a^2} + \frac{1}{4a^2 - ab + 2b^2} \geq \frac{9}{7(a^2 + b^2 + c^2)}.
\]
(Vasile Cirtoaje, 2005)

Solution. We use the SOS method. Without loss of generality, assume that \(a \geq b \geq c\). Write the inequality as
\[
\sum \left[\frac{7(a^2 + b^2 + c^2)}{4b^2 - bc + 4c^2} - 3 \right] \geq 0,
\]
\[
\sum \frac{7a^2 - 5b^2 - 5c^2 + 3bc}{4b^2 - bc + 4c^2} \geq 0,
\]
\[
\sum \frac{5(2a^2 - b^2 - c^2) - 3(a^2 - bc)}{4b^2 - bc + 4c^2} \geq 0.
\]
Since
\[
2(a^2 - bc) = (a - b)(a + c) + (a - c)(a + b),
\]
we have
\[
10(2a^2 - b^2 - c^2) - 6(a^2 - bc) =
\]
\[
= 10(a^2 - b^2) - 3(a - b)(a + c) + 10(a^2 - c^2) - 3(a - c)(a + b)
\]
\[
= (a - b)(7a + 10b - 3c) + (a - c)(7a + 10c - 3b).
\]
Thus, we can write the desired inequality as follows

\[
\sum \frac{(a-b)(7a+10b-3c)}{4b^2-bc+4c^2} + \sum \frac{(a-c)(7a+10c-3b)}{4b^2-bc+4c^2} \geq 0,
\]

\[
\sum \frac{(a-b)(7a+10b-3c)}{4b^2-bc+4c^2} + \sum \frac{(b-a)(7b+10a-3c)}{4c^2-ca+4a^2} \geq 0,
\]

\[
\sum \frac{(a-b)^2(28a^2+28b^2-9c^2+68ab-19bc-19ca)}{(4b^2-bc+4c^2)(4c^2-ca+4a^2)},
\]

\[
(b-c)^2S_a + (c-a)^2S_b + (a-b)^2S_c \geq 0,
\]

where

\[S_a = (4b^2-bc+4c^2)[(b-a)(28b+9a) + c(-19a+68b+28c)],\]

\[S_b = (4c^2-ca+4a^2)[(a-b)(28a+9b) + c(-19b+68a+28c)],\]

\[S_c = (4a^2-ab+4b^2)[(c-b)(28c+9c) + a(68b-19c+28a)].\]

Since \(S_b \geq 0\) and \(S_c > 0\), it suffices to show that \(S_a + S_b \geq 0\). We have

\[S_a \geq (4b^2-bc+4c^2)[(b-a)(28b+9a)-19ac],\]

\[S_b \geq (4c^2-ca+4a^2)[(a-b)(28a+9b)+19ac],\]

\[19ac[(4c^2-ca+4a^2)-(4b^2-bc+4c^2)] = 19ac(a-b)(4a+4b-c) \geq 0,\]

and hence

\[S_a + S_b \geq (a-b)[-(4b^2-bc+4c^2)(28b+9a) + (4c^2-ca+4a^2)(28a+9b)]\]

\[= (a-b)^2[112(a^2+ab+b^2) + 76c^2-28c(a+b)] \geq 0.\]

The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation). \(\square\)

P 1.78. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{2a^2+bc}{b^2+c^2} + \frac{2b^2+ca}{c^2+a^2} + \frac{2c^2+ab}{a^2+b^2} \geq \frac{9}{2}.
\]

(Vasile Cîrtoaje, 2005)
First Solution. We apply the SOS method. Since
\[
\sum \left[\frac{2(2a^2 + bc)}{b^2 + c^2} - 3 \right] = 2 \sum \frac{2a^2 - b^2 - c^2}{b^2 + c^2} - \sum \frac{(b - c)^2}{b^2 + c^2}
\]
and
\[
\sum \frac{2a^2 - b^2 - c^2}{b^2 + c^2} = \sum \frac{a^2 - b^2}{b^2 + c^2} + \sum \frac{a^2 - c^2}{b^2 + c^2} = \sum \frac{a^2 - b^2}{b^2 + c^2} + \sum \frac{b^2 - a^2}{c^2 + a^2}
\]
\[
= \sum (a^2 - b^2) \left(\frac{1}{b^2 + c^2} - \frac{1}{c^2 + a^2} \right) = \sum \frac{(a^2 - b^2)^2}{(b^2 + c^2)(c^2 + a^2)}
\]
\[
\geq \sum \frac{(a - b)^2(a^2 + b^2)}{(b^2 + c^2)(c^2 + a^2)}
\]
we can write the inequality as
\[
2 \sum \frac{(b - c)^2(b^2 + c^2)}{(c^2 + a^2)(a^2 + b^2)} \geq \sum \frac{(b - c)^2}{b^2 + c^2},
\]
or
\[(b - c)^2S_a + (c - a)^2S_b + (c - a)^2S_c \geq 0,
\]
where
\[S_a = 2(b^2 + c^2)^2 - (c^2 + a^2)(a^2 + b^2).
\]
Assume that \(a \geq b \geq c\). We have
\[S_b = 2(c^2 + a^2)^2 - (a^2 + b^2)(b^2 + c^2)
\]
\[\geq 2(c^2 + a^2)(c^2 + b^2) - (a^2 + b^2)(b^2 + c^2)
\]
\[= (b^2 + c^2)(a^2 - b^2 + 2c^2) \geq 0,
\]
\[S_c = 2(a^2 + b^2)^2 - (b^2 + c^2)(c^2 + a^2) > 0,
\]
\[S_a + S_b = (a^2 - b^2)^2 + 2c^2(a^2 + b^2 + 2c^2) \geq 0.
\]
Therefore,
\[(b - c)^2S_a + (c - a)^2S_b + (c - a)^2S_c \geq (b - c)^2S_a + (c - a)^2S_b
\]
\[\geq (b - c)^2(S_a + S_b) \geq 0.
\]
The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

Second Solution. Since
\[bc \geq \frac{2b^2c^2}{b^2 + c^2},
\]
we have
\[
\sum \frac{2a^2 + bc}{b^2 + c^2} \geq \sum \frac{2a^2 + 2b^2c^2}{b^2 + c^2} = 2(a^2b^2 + b^2c^2 + c^2a^2) \sum \frac{1}{(b^2 + c^2)^2}.
\]

Therefore, it suffices to show that
\[
\sum \frac{1}{(b^2 + c^2)^2} \geq \frac{9}{4(a^2b^2 + b^2c^2 + c^2a^2)},
\]
which is just the known Iran-1996 inequality (see Remark from P 1.70).

Third Solution. We get the desired inequality by summing the inequality in P 1.58-(a), namely
\[
\frac{2a^2 - 2bc}{b^2 + c^2} + \frac{2b^2 - 2ca}{c^2 + a^2} + \frac{2c^2 - 2ab}{a^2 + b^2} + \frac{6(ab + bc + ca)}{a^2 + b^2 + c^2} \geq 6,
\]
and the inequality
\[
\frac{3bc}{b^2 + c^2} + \frac{3ca}{c^2 + a^2} + \frac{3ab}{a^2 + b^2} + \frac{3}{2} \geq \frac{6(ab + bc + ca)}{a^2 + b^2 + c^2}.
\]

This inequality is equivalent to
\[
\sum \left(\frac{2bc}{b^2 + c^2} + 1 \right) \geq \frac{4(ab + bc + ca)}{a^2 + b^2 + c^2} + 2,
\]
and
\[
\sum \frac{(b + c)^2}{b^2 + c^2} \geq \frac{2(a + b + c)^2}{a^2 + b^2 + c^2}.
\]

By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{(b + c)^2}{b^2 + c^2} \geq \left(\sum (b + c) \right)^2 \sum \frac{1}{b^2 + c^2} = \frac{2(a + b + c)^2}{a^2 + b^2 + c^2}.
\]

\[\square\]

P 1.79. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{2a^2 + 3bc}{b^2 + bc + c^2} + \frac{2b^2 + 3ca}{c^2 + ca + a^2} + \frac{2c^2 + 3ab}{a^2 + ab + b^2} \geq 5.
\]

(Vasile Cîrtoaje, 2005)
Solution. We apply the SOS method. Write the inequality as

\[
\sum \left[\frac{3(2a^2 + 3bc)}{b^2 + bc + c^2} - 5 \right] \geq 0,
\]

or

\[
\sum \frac{6a^2 + 4bc - 5b^2 - 5c^2}{b^2 + bc + c^2} \geq 0.
\]

Since

\[
2(a^2 - bc) = (a - b)(a + c) + (a - c)(a + b),
\]

we have

\[
6a^2 + 4bc - 5b^2 - 5c^2 = 5(2a^2 - b^2 - c^2) - 4(a^2 - bc)
\]

\[
= 5(a^2 - b^2) - 2(a - b)(a + c) + 5(a^2 - c^2) - 2(a - c)(a + b)
\]

\[
= (a - b)(3a + 5b - 2c) + (a - c)(3a + 5c - 2b).
\]

Thus, we can write the desired inequality as follows

\[
\sum \frac{(a - b)(3a + 5b - 2c)}{b^2 + bc + c^2} + \sum \frac{(a - c)(3a + 5c - 2b)}{b^2 + bc + c^2} \geq 0,
\]

\[
\sum \frac{(a - b)(3a + 5b - 2c)}{b^2 + bc + c^2} + \sum \frac{(b - a)(3b + 5a - 2c)}{c^2 + ca + a^2} \geq 0,
\]

\[
\sum \frac{(a - b)^2(3a^2 + 3b^2 - 4c^2 + 8ab + bc + ca)}{(b^2 + bc + c^2)(c^2 + ca + a^2)}
\]

\[
(b - c)^2S_a + (c - a)^2S_b + (a - b)^2S_c \geq 0,
\]

where

\[
S_a = (b^2 + bc + c^2)(3b^2 + 3c^2 - 4a^2 + ab + 8bc + ca).
\]

Assume that \(a \geq b \geq c\). Since

\[
S_b = (c^2 + ca + a^2)[(a - b)(3a + 4b) + c(8a + b + c)] \geq 0
\]

and

\[
S_c = (a^2 + ab + b^2)[(b - c)(3b + 4c) + a(8b + c + a)] > 0,
\]

it suffices to show that \(S_a + S_b \geq 0\). We have

\[
S_a + S_b \geq (b^2 + bc + c^2)(b - a)(3b + 4a) + (c^2 + ca + a^2)(a - b)(3a + 4b)
\]

\[
= (a - b)^2[3(a + b)(a + b + c) + ab - c^2] \geq 0.
\]

The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation). \(\square\)
P 1.80. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{2a^2 + 5bc}{(b + c)^2} + \frac{2b^2 + 5ca}{(c + a)^2} + \frac{2c^2 + 5ab}{(a + b)^2} \geq \frac{21}{4}. \quad (Vasile Cîrtoaje, 2005)$$

Solution. Use the SOS method. Write the inequality as follows

$$\sum \left[\frac{2a^2 + 5bc}{(b + c)^2} - \frac{7}{4} \right] \geq 0,$$

$$\sum \frac{4(a^2 - b^2) + 4(a^2 - c^2) - 3(b - c)^2}{(b + c)^2} \geq 0,$$

$$4 \sum \frac{b^2 - c^2}{(c + a)^2} + 4 \sum \frac{c^2 - b^2}{(a + b)^2} - 3 \sum \frac{(b - c)^2}{(b + c)^2} \geq 0,$$

$$4 \sum \frac{(b - c)^2(b + c)(2a + b + c)}{(c + a)(a + b)^2} - 3 \sum \frac{(b - c)^2}{(b + c)^2} \geq 0.$$

Substituting $b + c = x$, $c + a = y$ and $a + b = z$, we can rewrite the inequality in the form

$$(y - z)^2S_x + (z - x)^2S_y + (x - y)^2S_z \geq 0,$$

where

$$S_x = 4x^3(y + z) - 3y^2z^2, \quad S_y = 4y^3(z + x) - 3z^2x^2, \quad S_z = 4z^3(x + y) - 3x^2y^2.$$

Without loss of generality, assume that $0 < x \leq y \leq z, z \leq x + y$. We have $S_z > 0$ and

$$S_y \geq 4x^2y(z + x) - 3x^2z(x + y) = x^2[4xy + z(y - 3x)] \geq 0,$$

since for the nontrivial case $y - 3x < 0$, we get

$$4xy + z(y - 3x) \geq 4xy + (x + y)(y - 3x) = x^2(3x + y)(y - x) \geq 0.$$

Thus, it suffices to show that $S_x + S_y \geq 0$. Since

$$S_x + S_y = 4xy(x^2 + y^2) + 4(x^3 + y^3)z - 3(x^2 + y^2)z^2 \geq 4xy(x^2 + y^2) + 4(x^3 + y^3)z - 3(x^2 + y^2)(x + y)z \geq 2xy(x + y)^2 + (x^2 - 4xy + y^2)(x + y)^2 = (x - y)^2(x + y)^2.$$

The equality holds for $a = b = c$, and for $a = 0$ and $b = c$ (or any cyclic permutation). □
\[\sum \frac{2a^2 + (2k + 1)bc}{b^2 + kbc + c^2} \geq \frac{3(2k + 3)}{k + 2}. \]

(Vasile Cîrtoaje, 2005)

First Solution. There are two cases to consider.

Case 1: \(-2 < k \leq -1/2\). Write the inequality as

\[\sum \left[\frac{2a^2 + (2k + 1)bc}{b^2 + kbc + c^2} - \frac{2k + 1}{k + 2} \right] \geq \frac{6}{k + 2}, \]

\[\sum \frac{2(k + 2)a^2 - (2k + 1)(b - c)^2}{b^2 + kbc + c^2} \geq 6. \]

Since \(2(k + 2)a^2 - (2k + 1)(b - c)^2 \geq 0\) for \(-2 < k \leq -1/2\), we can apply the Cauchy-Schwarz inequality. Thus, it suffices to show that

\[\frac{[2(k + 2) \sum a^2 - (2k + 1) \sum (b - c)^2]^2}{\sum [2(k + 2)a^2 - (2k + 1)(b - c)^2](b^2 + kbc + c^2)} \geq 6, \]

which is equivalent to each of the following inequalities

\[\sum [(1 - k) \sum a^2 + (2k + 1) \sum ab] \geq 3, \]

\[2(k + 2) \sum a^4 + 2(k + 2)abc \sum a - (2k + 1) \sum ab(a^2 + b^2) \geq 6 \sum a^2b^2, \]

\[2(k + 2)[\sum a^4 + abc \sum a - \sum ab(a^2 + b^2)] + 3 \sum ab(a - b)^2 \geq 0. \]

The last inequality is true since, by Schur’s inequality of degree four, we have

\[\sum a^4 + abc \sum a - \sum ab(a^2 + b^2) \geq 0. \]

Case 2: \(k \geq -9/5\). Use the SOS method. Without loss of generality, assume that \(a \geq b \geq c\). Write the inequality as

\[\sum \left[\frac{2a^2 + (2k + 1)bc}{b^2 + kbc + c^2} - \frac{2k + 3}{k + 2} \right] \geq 0, \]

\[\sum \frac{2(k + 2)a^2 - (2k + 1)(b^2 + c^2) + 2(k + 1)bc}{b^2 + kbc + c^2} \geq 0, \]

\[\sum \frac{(2k + 3)(2a^2 - b^2 - c^2) - 2(k + 1)(a^2 - bc)}{b^2 + kbc + c^2} \geq 0. \]
Since
\[2(a^2 - bc) = (a - b)(a + c) + (a - c)(a + b),\]
we have
\[
(2k + 3)(2a^2 - b^2 - c^2) - 2(k + 1)(a^2 - bc) =
\]
\[
= (2k + 3)(a^2 - b^2) - (k + 1)(a - b)(a + c) + (2k + 3)(a^2 - c^2) - (k + 1)(a - c)(a + b)
\]
\[
= (a - b)[(k + 2)a + (2k + 3)b - (k + 1)c] + (a - c)[(k + 2)a + (2k + 3)c - (k + 1)b].
\]
Thus, we can write the desired inequality as
\[
\sum \frac{(a - b)[(k + 2)a + (2k + 3)b - (k + 1)c]}{b^2 + kbc + c^2} + \sum \frac{(a - c)[(k + 2)a + (2k + 3)c - (k + 1)b]}{b^2 + kbc + c^2} \geq 0,
\]
or
\[
\sum \frac{(a - b)[(k + 2)a + (2k + 3)b - (k + 1)c]}{b^2 + kbc + c^2} + \sum \frac{(b - a)[(k + 2)b + (2k + 3)a - (k + 1)c]}{c^2 + kca + a^2} \geq 0,
\]
or
\[
(b - c)^2R_aS_a + (c - a)^2R_bS_b + (a - b)^2R_cS_c \geq 0,
\]
where
\[
R_a = b^2 + kbc + c^2, \ R_b = c^2 + kca + a^2, \ R_c = a^2 + kab + b^2,
\]
\[
S_a = (k + 2)(b^2 + c^2) - (k + 1)a^2 + (3k + 5)bc + (k^2 + k - 1)a(b + c)
\]
\[
= -(a - b)[(k + 1)^2a + (k + 2)b] + c[(k^2 + k - 1)a + (3k + 5)b + (k + 2)c],
\]
\[
S_b = (k + 2)(c^2 + a^2) - (k + 1)b^2 + (3k + 5)ca + (k^2 + k - 1)b(c + a)
\]
\[
= (a - b)[(k + 2)a + (k + 1)^2b] + c[(3k + 5)a + (k^2 + k - 1)b + (k + 2)c],
\]
\[
S_c = (k + 2)(a^2 + b^2) - (k + 1)c^2 + (3k + 5)ab + (k^2 + k - 1)c(a + b)
\]
\[
= (k + 2)(a^2 + b^2) + (3k + 5)ab + c[(k^2 + k - 1)(a + b) - (k + 1)^2c]
\]
\[
\geq (5k + 9)ab + c[(k^2 + k - 1)(a + b) - (k + 1)^2c].
\]
We have \(S_b \geq 0\), since for the nontrivial case
\[
(3k + 5)a + (k^2 + k - 1)b + (k + 2)c < 0,
\]
we get
\[
S_b \geq (a - b)[(k + 2)a + (k + 1)^2b] + b[(3k + 5)a + (k^2 + k - 1)b + (k + 2)c]
\]
\[
= (k + 2)(a^2 - b^2) + (k + 2)^2ab + (k + 2)b^2 > 0.
\]
Also, we have \(S_c \geq 0 \) for \(k \geq -9/5 \), since
\[
(5k + 9)ab + c[(k^2 + k - 1)(a + b) - (k + 1)^2 c] \geq \\
\geq (5k + 9)ac + c[(k^2 + k - 1)(a + b) - (k + 1)^2 c] \\
= (k + 2)(k + 4)ac + (k^2 + k - 1)bc - (k + 1)^2 c^2 \\
\geq (2k^2 + 7k + 7)bc - (k + 1)^2 c^2 \\
\geq (k + 2)(k + 3)c^2 \geq 0.
\]
Therefore, it suffices to show that \(R_aS_a + R_bS_b \geq 0 \). Since
\[
bR_b - aR_a = (a - b)(ab - c^2) \geq 0
\]
and
\[
R_aS_a + R_bS_b \geq R_a(S_a + \frac{a}{b}S_b),
\]
it suffices to show that
\[
S_a + \frac{a}{b}S_b \geq 0.
\]
We have
\[
bS_a + aS_b = (k + 2)(a + b)(a - b)^2 + c f(a, b, c) \\
\geq 2(k + 2)b(a - b)^2 + c f(a, b, c),
\]
\[
S_a + \frac{a}{b}S_b \geq 2(k + 2)(a - b)^2 + \frac{c}{b}f(a, b, c),
\]
where
\[
f(a, b, c) = b[(k^2 + k - 1)a + (3k + 5)b] + a[(3k + 5)a + (k^2 + k - 1)b] \\
+(k + 2)c(a + b) = (3k + 5)(a^2 + b^2) + 2(k^2 + k - 1)ab + (k + 2)c(a + b).
\]
For the nontrivial case \(f(a, b, c) < 0 \), we have
\[
S_a + \frac{a}{b}S_b \geq 2(k + 2)(a - b)^2 + f(a, b, c) \\
\geq 2(k + 2)(a - b)^2 + (3k + 5)(a^2 + b^2) + 2(k^2 + k - 1)ab \\
= (5k + 9)(a^2 + b^2) + 2(k^2 - k - 5)ab \geq 2(k + 2)^2ab \geq 0.
\]
The proof is completed. The equality holds for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. Let
\[
p = a + b + c, \quad q = ab + bc + ca.
\]
Write the inequality as \(f_6(a, b, c) \geq 0 \), where

\[
f_6(a, b, c) = (k + 2) \sum [2a^2 + (2k + 1)bc](a^2 + kab + b^2)(a^2 + kac + c^2) \]

\[
-3(2k + 3) \prod (b^2 + kbc + c^2).
\]

Since

\[
(a^2 + kab + b^2)(a^2 + kac + c^2) = (p^2 - 2q + kab - c^2)(p^2 - 2q + kac - b^2),
\]

\[
b^2 + kbc + c^2 = p^2 - 2q + kbc - a^2,
\]

\(f_6(a, b, c) \) has the same highest coefficient \(A \) as

\[
(k + 2)P_2(a, b, c) - 3(2k + 3)P_3(a, b, c),
\]

where

\[
P_2(a, b, c) = \sum [2a^2 + (2k + 1)bc](kab - c^2)(kac - b^2), \quad P_3(a, b, c) = \prod (b^2 + kbc + c^2).
\]

According to Remark 2 from the proof of P 1.75 in Volume 1, we have

\[
A = (k + 2)P_2(1, 1, 1) - 3(2k + 3)P_3(1, 1, 1) = 9(2k + 3)(k - 1)^2.
\]

On the other hand,

\[
f_6(a, 1, 1) = 2(k + 2)a(a^2 + ka + 1)(a - 1)^2(a + k + 2) \geq 0,
\]

\[
f_6(0, b, c) = (b - c)^2 \left[2(k + 2)(b^2 + c^2)^2 + 2(k + 2)^2bc(b^2 + c^2) + (4k^2 + 6k - 1)b^2c^2 \right].
\]

For \(-2 < k \leq -3/2\), we have \(A \leq 0 \). According to P 2.76-(a) in Volume 1, it suffices to show that \(f_6(a, 1, 1) \geq 0 \) and \(f_6(0, b, c) \geq 0 \) for all \(a, b, c \geq 0 \). The first condition is clearly satisfied. The second condition is also satisfied since

\[
2(k + 2)(b^2 + c^2)^2 + (4k^2 + 6k - 1)b^2c^2 \geq [8(k + 2) + 4k^2 + 6k - 1]b^2c^2
\]

\[
= (4k^2 + 14k + 15)b^2c^2 \geq 0.
\]

For \(k > -3/2 \), when \(A \geq 0 \), we will apply the highest coefficient cancellation method. Consider two cases: \(p^2 \leq 4q \) and \(p^2 > 4q \).

Case 1: \(p^2 \leq 4q \). Since

\[
f_6(1, 1, 1) = f_6(0, 1, 1) = 0,
\]

define the homogeneous function

\[
P(a, b, c) = abc + B(a + b + c)^3 + C(a + b + c)(ab + bc + ca)
\]
such that \(P(1, 1, 1) = P(0, 1, 1) = 0 \); that is,

\[
P(a, b, c) = abc + \frac{1}{9}(a + b + c)^3 - \frac{4}{9}(a + b + c)(ab + bc + ca).
\]

We will prove the sharper inequality \(g_6(a, b, c) \geq 0 \), where

\[
g_6(a, b, c) = f_6(a, b, c) - 9(2k + 3)(k - 1)^2p^2(a, b, c).
\]

Clearly, \(g_6(a, b, c) \) has the highest coefficient \(A = 0 \). Then, according to Remark 1 from \(P 2.76 \) in Volume 1, it suffices to prove that \(g_6(a, 1, 1) \geq 0 \) for \(0 \leq a \leq 4 \). We have

\[
P(a, 1, 1) = \frac{a(a - 1)^2}{9},
\]

hence

\[
g_6(a, 1, 1) = f_6(a, 1, 1) - 9(2k + 3)(k - 1)^2p^2(a, 1, 1) = \frac{a(a - 1)^2g(a)}{9},
\]

where

\[
g(a) = 18(k + 2)(a^2 + ka + 1)(a + k + 2) - (2k + 3)(k - 1)^2a(a - 1)^2.
\]

Since \(a^2 + ka + 1 \geq (k + 2)a \), it suffices to show that

\[
18(k + 2)^2(a + k + 2) \geq (2k + 3)(k - 1)^2(a - 1)^2.
\]

Also, since \((a - 1)^2 \leq 2a + 1 \), it is enough to prove that \(h(a) \geq 0 \), where

\[
h(a) = 18(k + 2)^2(a + k + 2) - (2k + 3)(k - 1)^2(2a + 1).
\]

Since \(h(a) \) is a linear function, the inequality \(h(a) \geq 0 \) is true if \(h(0) \geq 0 \) and \(h(4) \geq 0 \). Setting \(x = 2k + 3, \ x > 0 \), we get

\[
h(0) = 18(k + 2)^3 - (2k + 3)(k - 1)^2 = \frac{1}{4}(8x^3 + 37x^2 + 2x + 9) > 0.
\]

Also,

\[
\frac{1}{9}h(4) = 2(k + 2)^2(k + 6) - (2k + 3)(k - 1)^2 = 3(7k^2 + 20k + 15) > 0.
\]

Case 2: \(p^2 > 4q \). We will prove the sharper inequality \(g_6(a, b, c) \geq 0 \), where

\[
g_6(a, b, c) = f_6(a, b, c) - 9(2k + 3)(k - 1)^2a^2b^2c^2.
\]
We see that \(g_6(a, b, c) \) has the highest coefficient \(A = 0 \). According to Remark 1 from P 2.76 in Volume 1, it suffices to prove that \(g_6(a, 1, 1) \geq 0 \) for \(a > 4 \) and \(g_6(0, b, c) \geq 0 \) for all \(b, c \geq 0 \). We have

\[
g_6(a, 1, 1) = f_6(a, 1, 1) - 9(2k + 3)(k - 1)^2a^2
\]

\[
= a[2(k + 2)(a^2 + ka + 1)(a - 1)^2(a + k + 2) - 9(2k + 3)(k - 1)^2a].
\]

Since

\[
a^2 + ka + 1 > (k + 2)a, \quad (a - 1)^2 > 9,
\]

it suffices to show that

\[
2(k + 2)^2(a + k + 2) \geq (2k + 3)(k - 1)^2.
\]

Indeed,

\[
2(k + 2)^2(a + k + 2) - (2k + 3)(k - 1)^2 > 2(k + 2)^2(k + 6) - (2k + 3)(k - 1)^2
\]

\[
= 3(7k^2 + 20k + 15) > 0.
\]

Also,

\[
g_6(0, b, c) = f_6(0, b, c) \geq 0.
\]

\[\square\]

P 1.82. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. If \(k > -2 \), then

\[
\sum \frac{3bc - 2a^2}{b^2 + kbc + c^2} \leq \frac{3}{k + 2}.
\]

(Vasile Cîrtoaje, 2011)

First Solution. Write the inequality as

\[
\sum \left[\frac{2a^2 - 3bc}{b^2 + kbc + c^2} + \frac{3}{k + 2} \right] \geq \frac{6}{k + 2}
\]

\[
\sum \frac{2(k + 2)a^2 + 3(b - c)^2}{b^2 + kbc + c^2} \geq 6.
\]

Applying the Cauchy-Schwarz inequality, it suffices to show that

\[
\frac{[2(k + 2) \sum a^2 + 3 \sum (b - c)^2]^2}{\sum[2(k + 2)a^2 + 3(b - c)^2](b^2 + kbc + c^2)} \geq 6,
\]
which is equivalent to each of the following inequalities

\[
\frac{2((k+5) \sum a^2 - 3 \sum ab)^2}{\sum [2(k+2)a^2 + 3(b-c)^2](b^2 + kbc + c^2)} \geq 3,
\]

\[
2(k+8) \sum a^4 + 2(2k+19) \sum a^2 b^2 \geq 6(k+2)abc \sum a + 21 \sum ab(a^2 + b^2),
\]

\[
2(k+2)f(a, b, c) + 3g(a, b, c) \geq 0,
\]

where

\[
f(a, b, c) = \sum a^4 + 2 \sum a^2 b^2 - 3abc \sum a,
\]

\[
g(a, b, c) = 4 \sum a^4 + 10 \sum a^2 b^2 - 7 \sum ab(a^2 + b^2).
\]

We need to show that \(f(a, b, c) \geq 0 \) and \(g(a, b, c) \geq 0 \). Indeed,

\[
f(a, b, c) = (\sum a^2)^2 - 3abc \sum a \geq (\sum ab)^2 - 3abc \sum a \geq 0
\]

and

\[
g(a, b, c) = \sum [2(a^4 + b^4) + 10a^2 b^2 - 7ab(a^2 + b^2)]
\]

\[
= \sum (a-b)^2 (2a^2 - 3ab + 2b^2) \geq 0.
\]

The equality occurs for \(a = b = c \).

Second Solution. Write the inequality in P 1.81 as

\[
\sum \left[2 - \frac{2a^2 + (2k+1)bc}{b^2 + kbc + c^2} \right] \leq \frac{3}{k+2},
\]

\[
\sum \frac{2(b^2 + c^2) - bc - 2a^2}{b^2 + kbc + c^2} \leq \frac{3}{k+2}.
\]

Since \(b^2 + c^2 \geq 2bc \), we get

\[
\sum \frac{3bc - 2a^2}{b^2 + kbc + c^2} \leq \frac{3}{k+2},
\]

which is just the desired inequality.

\[
\square
\]

P 1.83. If \(a, b, c \) are nonnegative real numbers, no two of which are zero, then

\[
\frac{a^2 + 16bc}{b^2 + c^2} + \frac{b^2 + 16ca}{c^2 + a^2} + \frac{c^2 + 16ab}{a^2 + b^2} \geq 10.
\]

(Vasile Cirtoaje, 2005)
Solution. Let \(a \leq b \leq c \), and

\[
E(a, b, c) = \frac{a^2 + 16bc}{b^2 + c^2} + \frac{b^2 + 16ca}{c^2 + a^2} + \frac{c^2 + 16ab}{a^2 + b^2}.
\]

Consider two cases.

Case 1: \(16b^3 \geq ac^2 \). We will show that

\[
E(a, b, c) \geq E(0, b, c) \geq 10.
\]

We have

\[
E(a, b, c) - E(0, b, c) = \frac{a^2}{b^2 + c^2} + \frac{a(16c^3 - ab^2)}{c^2(c^2 + a^2)} + \frac{a(16b^3 - ac^2)}{b^2(a^2 + b^2)} \geq 0,
\]

since \(c^3 - ab^2 \geq 0 \) and \(16b^3 - ac^2 \geq 0 \). Also,

\[
E(0, b, c) - 10 = \frac{16bc}{b^2 + c^2} + \frac{b^2}{c^2} + \frac{c^2}{b^2} - 10 = \frac{(b - c)^4(b^2 + c^2 + 4bc)}{b^2c^2(b^2 + c^2)} \geq 0.
\]

Case 2: \(16b^3 \leq ac^2 \). It suffices to show that

\[
\frac{c^2 + 16ab}{a^2 + b^2} \geq 10.
\]

Indeed,

\[
\frac{c^2 + 16ab}{a^2 + b^2} - 10 \geq \frac{16b^3}{a} + \frac{16ab}{a^2 + b^2} - 10 = \frac{16b}{a} - 10 \geq 16 - 10 > 0.
\]

This completes the proof. The equality holds for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\(\square \)

P 1.84. If \(a, b, c \) are nonnegative real numbers, no two of which are zero, then

\[
\frac{a^2 + 128bc}{b^2 + c^2} + \frac{b^2 + 128ca}{c^2 + a^2} + \frac{c^2 + 128ab}{a^2 + b^2} \geq 46.
\]

(Vasile Cîrtoaje, 2005)
Solution. Let \(a \leq b \leq c\), and
\[
E(a, b, c) = \frac{a^2 + 128bc}{b^2 + c^2} + \frac{b^2 + 128ca}{c^2 + a^2} + \frac{c^2 + 128ab}{a^2 + b^2}.
\]
Consider two cases.

Case 1: \(128b^3 \geq ac^2\). We will show that
\[
E(a, b, c) \geq E(0, b, c) \geq 46.
\]
We have
\[
E(a, b, c) - E(0, b, c) = \frac{a^2}{b^2 + c^2} + \frac{a(128c^3 - ab^2)}{c^2(c^2 + a^2)} + \frac{a(128b^3 - ac^2)}{b^2(a^2 + b^2)} \geq 0,
\]
since \(c^3 - ab^2 \geq 0\) and \(128b^3 - ac^2 \geq 0\). Also,
\[
E(0, b, c) - 46 = \frac{128bc}{b^2 + c^2} + \frac{b^2}{c^2} + \frac{c^2}{b^2} - 46
\]
\[
= \frac{(b^2 + c^2 - 4bc)^2(b^2 + c^2 + 8bc)}{b^2c^2(b^2 + c^2)} \geq 0.
\]

Case 2: \(128b^3 \leq ac^2\). It suffices to show that
\[
\frac{c^2 + 128ab}{a^2 + b^2} \geq 46.
\]
Indeed,
\[
\frac{c^2 + 128ab}{a^2 + b^2} - 46 \geq \frac{128b^3}{a} + \frac{128ab}{a^2 + b^2} - 46
\]
\[
= \frac{128b}{a} - 46 \geq 128 - 46 > 0.
\]
This completes the proof. The equality holds for \(a = 0\) and \(\frac{b}{c} + \frac{c}{b} = 4\) (or any cyclic permutation).

\[\square\]

P 1.85. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{a^2 + 64bc}{(b+c)^2} + \frac{b^2 + 64ca}{(c+a)^2} + \frac{c^2 + 64ab}{(a+b)^2} \geq 18.
\]

(Vasile Cirtoaje, 2005)
Solution. Let \(a \leq b \leq c \), and
\[
E(a, b, c) = \frac{a^2 + 64bc}{(b + c)^2} + \frac{b^2 + 64ca}{(c + a)^2} + \frac{c^2 + 64ab}{(a + b)^2}.
\]
Consider two cases.

Case 1: \(64b^3 \geq c^2(a + 2b) \). We will show that
\[
E(a, b, c) \geq E(0, b, c) \geq 18.
\]
We have
\[
E(a, b, c) - E(0, b, c) = \frac{a^2}{(b + c)^2} + \frac{a[64c^3 - b^2(a + 2c)]}{c^2(c + a)^2} + \frac{a[64b^3 - c^2(a + 2b)]}{b^2(a + b)^2} \\
\geq \frac{a[64c^3 - b^2(a + 2c)]}{c^2(c + a)^2} \geq \frac{a[64b^2c - b^2(c + 2c)]}{c^2(c + a)^2} = \frac{61ab^2c}{c^2(c + a)^2} \geq 0.
\]
Also,
\[
E(0, b, c) - 18 = \frac{64bc}{(b + c)^2} + \frac{b^2}{c^2} + \frac{c^2}{b^2} - 18 \\
= \frac{(b - c)^4(b^2 + c^2 + 6bc)}{b^2c^2(b + c)^2} \geq 0.
\]

Case 2: \(64b^3 \leq c^2(a + 2b) \). It suffices to show that
\[
\frac{c^2 + 64ab}{(a + b)^2} \geq 18.
\]
Indeed,
\[
\frac{c^2 + 64ab}{(a + b)^2} - 18 \geq \frac{64b^3}{a + 2b} + 64ab \\
\geq \frac{64b^3}{a + 2b} - 18 \geq \frac{64}{3} - 18 > 0.
\]
This completes the proof. The equality holds for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square\]

P 1.86. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. If \(k \geq -1 \), then
\[
\sum \frac{a^2(b + c) + kabc}{b^2 + kbc + c^2} \geq a + b + c.
\]
Solution. We apply the SOS method. Write the inequality as follows

\[
\sum \left[\frac{a^2(b + c) + kabc}{b^2 + kbc + c^2} - a \right] \geq 0,
\]

\[
\sum \frac{a(ab + ac - b^2 - c^2)}{b^2 + kbc + c^2} \geq 0,
\]

\[
\sum \frac{ab(a - b)}{b^2 + kbc + c^2} + \sum \frac{ac(a - c)}{b^2 + kbc + c^2} \geq 0,
\]

\[
\sum \frac{ab(a - b)}{b^2 + kbc + c^2} + \sum \frac{ba(b - a)}{c^2 + kca + a^2} \geq 0,
\]

\[
\sum ab(a^2 + kab + b^2)(a + b + kc)(a - b)^2 \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c\). Since \(a + b + kc \geq a + b - c > 0\), it suffices to show that

\[
b(b^2 + kbc + c^2)(b + c + ka)(b - c)^2 + a(c^2 + kca + a^2)(c + a + kb)(c - a)^2 \geq 0.
\]

Since \(c + a + kb \geq c + a - b \geq 0\) and \(c^2 + kca + a^2 \geq b^2 + kbc + c^2\), it is enough to prove that

\[
b(b + c + ka)(b - c)^2 + a(c + a + kb)(c - a)^2 \geq 0.
\]

We have

\[
b(b + c + ka)(b - c)^2 + a(c + a + kb)(c - a)^2 \geq
\]

\[
\geq [b(b + c + ka) + a(c + a + kb)](b - c)^2
\]

\[
= [a^2 + b^2 + 2kab + c(a + b)](b - c)^2
\]

\[
\geq [(a - b)^2 + c(a + b)](b - c)^2 \geq 0.
\]

The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\(\square \)

P 1.87. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(k \geq -\frac{3}{2}\), then

\[
\sum \frac{a^3 + (k + 1)abc}{b^2 + kbc + c^2} \geq a + b + c.
\]

(Vasile Cîrtoaje, 2009)
Since it is enough to show that any cyclic permutation).

This completes the proof. The equality holds for $a = b = c$, and for $a = 0$ and $b = c$ (or any cyclic permutation).
P 1.88. Let a, b, c be nonnegative real numbers, no two of which are zero. If $k > 0$, then

$$\frac{2a^k - b^k - c^k}{b^2 - bc + c^2} + \frac{2b^k - c^k - a^k}{c^2 - ca + a^2} + \frac{2c^k - a^k - b^k}{a^2 - ab + b^2} \geq 0.$$

(Vasile Cîrtoaje, 2004)

Solution. Let

$$X = b^k - c^k, \quad Y = c^k - a^k, \quad Z = a^k - b^k,$$

$$A = b^2 - bc + c^2, \quad B = c^2 - ca + a^2, \quad C = a^2 - ab + b^2.$$

Without loss of generality, assume that $a \geq b \geq c$. This involves $A \leq B, A \leq C, X \geq 0$, and $Z \geq 0$. Since

$$\sum_{cyc} \frac{2a^k - b^k - c^k}{b^2 - bc + c^2} = \frac{X + 2Z}{A} + \frac{X - Z}{B} - \frac{2X + Z}{C} = X \left(\frac{1}{A} + \frac{1}{B} - \frac{2}{C} \right) + Z \left(\frac{2}{A} - \frac{1}{B} - \frac{1}{C} \right),$$

it suffices to prove that

$$\frac{1}{A} + \frac{1}{B} - \frac{2}{C} \geq 0.$$

Write this inequality as

$$\frac{1}{A} - \frac{1}{C} \geq \frac{1}{C} - \frac{1}{B},$$

that is,

$$(a - c)(a + c - b)(a^2 - ac + c^2) \geq (b - c)(a - b - c)(b^2 - bc + c^2).$$

For the nontrivial case $a > b + c$, we can obtain this inequality from

$$a + c - b \geq a - b - c,$$

$$a - c \geq b - c,$$

$$a^2 - ac + c^2 > b^2 - bc + c^2.$$

This completes the proof. The equality holds for $a = b = c$, and for $a = 0$ and $b = c$ (or any cyclic permutation). \qed
P 1.89. If \(a, b, c \) are the lengths of the sides of a triangle, then

(a) \[
\frac{b + c - a}{b^2 - bc + c^2} + \frac{c + a - b}{c^2 - ca + a^2} + \frac{a + b - c}{a^2 - ab + b^2} \geq \frac{2(a + b + c)}{a^2 + b^2 + c^2};
\]

(b) \[
\frac{a^2 - 2bc}{b^2 - bc + c^2} + \frac{b^2 - 2ca}{c^2 - ca + a^2} + \frac{c^2 - 2ab}{a^2 - ab + b^2} \leq 0.
\]

\text{(Vasile Cîrtoaje, 2009)}

\textbf{Solution.} (a) By the Cauchy-Schwarz inequality, we get

\[
\sum \frac{b + c - a}{b^2 - bc + c^2} \geq \frac{[\sum (b + c - a)]^2}{\sum (b + c - a)(b^2 - bc + c^2)} = \frac{(\sum a)^2}{2 \sum a^3 - \sum a^2(b + c) + 3abc}.
\]

On the other hand, from

\[
(b + c - a)(c + a - b)(a + b - c) \geq 0,
\]

we get

\[2abc \leq \sum a^2(b + c) - \sum a^3,
\]

and hence

\[2 \sum a^3 - \sum a^2(b + c) + 3abc \leq \frac{\sum a^3 + \sum a^2(b + c)}{2} = \frac{(\sum a)(\sum a^2)}{2}.
\]

Therefore,

\[\sum \frac{b + c - a}{b^2 - bc + c^2} \geq \frac{2 \sum a}{\sum a^2}.
\]

The equality holds for a degenerate triangle with \(a = b + c \) (or any cyclic permutation).

(b) Since

\[
\sum \frac{a^2 - 2bc}{b^2 - bc + c^2} = 2 - \frac{(b - c)^2 + (b + c)^2 - a^2}{b^2 - bc + c^2},
\]

we can write the inequality as

\[\sum \frac{(b - c)^2}{b^2 - bc + c^2} + (a + b + c) \sum \frac{b + c - a}{b^2 - bc + c^2} \geq 6.
\]

Using the inequality in (a), it suffices to prove that

\[\sum \frac{(b - c)^2}{b^2 - bc + c^2} + \frac{2(a + b + c)^2}{a^2 + b^2 + c^2} \geq 6.
\]
Write this inequality as
\[
\sum \frac{(b-c)^2}{b^2 - bc + c^2} \geq \sum \frac{2(b-c)^2}{a^2 + b^2 + c^2},
\]
or, equivalently,
\[
\sum \frac{(b-c)^2(a-b+c)(a+b-c)}{b^2 - bc + c^2} \geq 0,
\]
which is true. The equality holds for degenerate triangles with either \(a/2 = b = c\) (or any cyclic permutation), or \(a = 0\) and \(b = c\) (or any cyclic permutation).

Remark. The following generalization of the inequality in (b) holds (Vasile Cîrtoaje, 2009):

- Let \(a, b, c\) be the lengths of the sides of a triangle. If \(k \geq -1\), then
 \[
 \sum \frac{a^2 - 2(k + 2)bc}{b^2 + kbc + c^2} \leq 0.
 \]
with equality for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\(\square\)

P 1.90. If \(a, b, c\) are nonnegative real numbers, then
\[
\frac{a^2}{5a^2 + (b + c)^2} + \frac{b^2}{5b^2 + (c + a)^2} + \frac{c^2}{5c^2 + (a + b)^2} \leq \frac{1}{3}.
\]
(Vo Quoc Ba Can, 2009)

Solution. Apply the Cauchy-Schwarz inequality in the following manner
\[
\frac{9}{5a^2 + (b + c)^2} = \frac{(1 + 2)^2}{(a^2 + b^2 + c^2) + 2(2a^2 + bc)} \leq \frac{1}{a^2 + b^2 + c^2} + \frac{2}{2a^2 + bc}.
\]
Then,
\[
\sum \frac{9a^2}{5a^2 + (b + c)^2} \leq \sum \frac{a^2}{a^2 + b^2 + c^2} + \sum \frac{2a^2}{2a^2 + bc} = 4 - \sum \frac{bc}{2a^2 + bc},
\]
and it remains to show that
\[
\sum \frac{bc}{2a^2 + bc} \geq 1.
\]
This is a known inequality, which can be proved by the Cauchy-Schwarz inequality, as follows
\[
\sum \frac{bc}{2a^2 + bc} \geq \frac{(\sum bc)^2}{\sum bc(2a^2 + bc)} = 1.
\]
The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\(\square\)
P 1.91. If a, b, c are nonnegative real numbers, then

$$\frac{b^2 + c^2 - a^2}{2a^2 + (b + c)^2} + \frac{c^2 + a^2 - b^2}{2b^2 + (c + a)^2} + \frac{a^2 + b^2 - c^2}{2c^2 + (a + b)^2} \geq \frac{1}{2}.$$

(Vasile Cîrtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as follows

$$\sum \left[\frac{b^2 + c^2 - a^2}{2a^2 + (b + c)^2} - \frac{1}{6} \right] \geq 0,$$

$$\sum \frac{5(b^2 + c^2 - 2a^2) + 2(a^2 - bc)}{2a^2 + (b + c)^2} \geq 0;$$

$$\sum \frac{5(b^2 - a^2) + 5(c^2 - a^2) + (a - b)(a + c) + (a - c)(a + b)}{2a^2 + (b + c)^2} \geq 0;$$

$$\sum \frac{(b - a)[5(b + a) - (a + c)]}{2a^2 + (b + c)^2} + \sum \frac{(c - a)[5(c + a) - (a + b)]}{2a^2 + (b + c)^2} \geq 0;$$

$$\sum \frac{(b - a)[5(b + a) - (a + c)]}{2a^2 + (b + c)^2} + \sum \frac{(a - b)[5(a + b) - (b + c)]}{2b^2 + (c + a)^2} \geq 0;$$

$$\sum (a - b)^2 [2c^2 + (a + b)^2] \left[2(a^2 + b^2) + c^2 + 3ab - 3c(a + b) \right] \geq 0,$$

$$\sum (b - c)^2 R_a S_a \geq 0,$$

where

$$R_a = 2a^2 + (b + c)^2, \quad S_a = a^2 + 2(b^2 + c^2) + 3bc - 3a(b + c).$$

Without loss of generality, assume that $a \geq b \geq c$. We have

$$S_b = b^2 + 2(c^2 + a^2) + 3ca - 3b(c + a) = (a - b)(2a - b) + 2c^2 + 3c(a - b) \geq 0,$$

$$S_c = c^2 + 2(a^2 + b^2) + 3ab - 3c(a + b) \geq 7ab - 3c(a + b) \geq 3a(b - c) + 3b(a - c) \geq 0,$$

$$S_a + S_b = 3(a - b)^2 + 4c^2 \geq 0.$$

Since

$$\sum (b - c)^2 R_a S_a \geq (b - c)^2 R_a S_a + (c - a)^2 R_b S_b$$

$$= (b - c)^2 R_a (S_a + S_b) + [(c - a)^2 R_b - (b - c)^2 R_a] S_b,$$

it suffices to prove that

$$(a - c)^2 R_b \geq (b - c)^2 R_a.$$

We can get this by multiplying the inequalities

$$b^2 (a - c)^2 \geq a^2 (b - c)^2$$

and

$$(a - c)^2 R_b \geq (b - c)^2 R_a.$$
and
\[a^2R_b \geq b^2R_a. \]
The equality holds for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation). \(\square \)

P 1.92. Let \(a, b, c \) be positive real numbers. If \(k > 0 \), then
\[
\frac{3a^2 - 2bc}{ka^2 + (b - c)^2} + \frac{3b^2 - 2ca}{kb^2 + (c - a)^2} + \frac{3c^2 - 2ab}{kc^2 + (a - b)^2} \leq \frac{3}{k}.
\]
(Vasile Cîrtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows

\[
\sum \left[\frac{1}{k} \left(\frac{3a^2 - 2bc}{ka^2 + (b - c)^2} \right) \right] \geq 0,
\]
\[
\sum \frac{b^2 + c^2 - 2a^2 + 2(k-1)(bc - a^2)}{ka^2 + (b - c)^2} \geq 0;
\]
\[
\sum \frac{(b^2 - a^2) + (c^2 - a^2) + (k-1)[(a+b)(c-a) + (a+c)(b-a)]}{ka^2 + (b - c)^2} \geq 0;
\]
\[
\sum \frac{(b-a)[b + a + (k-1)(a + c)]}{ka^2 + (b - c)^2} + \sum \frac{(c-a)[c + a + (k-1)(a + b)]}{ka^2 + (b - c)^2} \geq 0;
\]
\[
\sum \frac{(b-a)[b + a + (k-1)(a + c)]}{ka^2 + (b - c)^2} + \sum \frac{(a-b)[a + b + (k-1)(b + c)]}{kb^2 + (c - a)^2} \geq 0;
\]
\[
\sum (a-b)^2[kc^2 + (a-b)^2][(k-1)c^2 + 2c(a+b) + (k^2-1)(ab + bc + ca)] \geq 0.
\]

For \(k \geq 1 \), the inequality is clearly true. Consider further that \(0 < k < 1 \). Since
\[
(k-1)c^2 + 2c(a+b) + (k^2-1)(ab + bc + ca) >
\]
\[
> -c^2 + 2c(a+b) - (ab + bc + ca) = (b-c)(c-a),
\]
it suffices to prove that
\[
(a-b)(b-c)(c-a) \sum (a-b)[kc^2 + (a-b)^2] \geq 0.
\]
Since
\[
\sum (a-b)[kc^2 + (a-b)^2] = k \sum (a-b)c^2 + \sum (a-b)^3
\]
\[
= (3-k)(a-b)(b-c)(c-a),
\]
we have
\[(a - b)(b - c)(c - a) \sum (a - b)[kc^2 + (a - b)^2] =
= (3 - k)(a - b)^2(b - c)^2(c - a)^2 \geq 0.\]
This completes the proof. The equality holds for \(a = b = c\). $
\square$

P 1.93. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. If \(k \geq 3 + \sqrt{7}\), then

(a) \[\frac{a}{a^2 + kbc} + \frac{b}{b^2 + kca} + \frac{c}{c^2 + kab} \geq \frac{9}{(1 + k)(a + b + c)};\]

(b) \[\frac{1}{ka^2 + bc} + \frac{1}{kb^2 + ca} + \frac{1}{kc^2 + ab} \geq \frac{9}{(k + 1)(ab + bc + ca)}.\]

(Vasile Cîrtoaje, 2005)

Solution. (a) Assume that \(a = \max\{a, b, c\}\). Setting \(t = (b + c)/2, t \leq a\), by the Cauchy-Schwarz inequality, we get

\[\frac{b}{b^2 + kca} + \frac{c}{c^2 + kab} \geq \frac{(b + c)^2}{b(b^2 + kca) + c(c^2 + kab)} = \frac{4t^2}{b^2 + 2t^2 + (ka - 3t)bc} \geq \frac{2t^2}{4t^2 + (ka - 3t)t^2} = \frac{2}{t + ka}.\]

On the other hand,
\[\frac{a}{a^2 + kbc} \geq \frac{a}{a^2 + kt^2}.\]
Therefore, it suffices to prove that
\[\frac{a}{a^2 + kt^2} + \frac{2}{t + ka} \geq \frac{9}{(k + 1)(a + 2t)},\]
which is equivalent to
\[(a - t)^2[(k^2 - 6k + 2)a + k(4k - 5)t] \geq 0.\]
This inequality is true, since \(k^2 - 6k + 2 \geq 0\) and \(4k - 5 > 0\). The equality holds for \(a = b = c\).

(b) For \(a = 0\), the inequality becomes
\[\frac{1}{b^2} + \frac{1}{c^2} \geq \frac{k(8 - k)}{(k + 1)bc}.\]
We have
\[
\frac{1}{b^2} + \frac{1}{c^2} - \frac{k(8-k)}{(k+1)bc} \geq \frac{2}{bc} - \frac{k(8-k)}{(k+1)bc} = \frac{k^2 - 6k + 2}{(k+1)bc} \geq 0.
\]
For \(a, b, c > 0\), the desired inequality follows from the inequality in (a) by substituting \(a, b, c\) with \(1/a, 1/b, 1/c\), respectively. The equality holds for \(a = b = c\). In the case \(k = 3 + \sqrt{7}\), the equality also holds for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.94. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab} \geq \frac{6}{a^2 + b^2 + c^2 + ab + bc + ca}.
\]

(Vasile Cîrtoaje, 2005)

Solution. Applying the Cauchy-Schwarz inequality, we have
\[
\sum \frac{1}{2a^2 + bc} = \sum \frac{(b + c)^2}{(b + c)^2(2a^2 + bc)} \geq \frac{4(a + b + c)^2}{\sum (b + c)^2(2a^2 + bc)}.
\]
Thus, it suffices to show that
\[
2(a + b + c)^2(a^2 + b^2 + c^2 + ab + bc + ca) \geq 3 \sum (b + c)^2(2a^2 + bc),
\]
which is equivalent to
\[
2 \sum a^4 + 3 \sum ab(a^2 + b^2) + 2abc \sum a \geq 10 \sum a^2b^2.
\]
This follows by adding Schur’s inequality
\[
2 \sum a^4 + 2abc \sum a \geq 2 \sum ab(a^2 + b^2)
\]
to the inequality
\[
5 \sum ab(a^2 + b^2) \geq 10 \sum a^2b^2.
\]
The equality holds for \(a = b = c\), and also for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.95. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{22a^2 + 5bc} + \frac{1}{22b^2 + 5ca} + \frac{1}{22c^2 + 5ab} \geq \frac{1}{(a + b + c)^2}.
\]

(Vasile Cîrtoaje, 2005)
Solution. Applying the Cauchy-Schwarz inequality, we have

$$\sum \frac{1}{2a^2 + 5bc} = \sum \frac{(b + c)^2}{(b + c)^2(2a^2 + 5bc)} \geq \frac{4(a + b + c)^2}{\sum (b + c)^2(2a^2 + 5bc)}.$$

Thus, it suffices to show that

$$4(a + b + c)^4 \geq \sum (b + c)^2(22a^2 + 5bc),$$

which is equivalent to

$$4 \sum a^4 + 11 \sum ab(a^2 + b^2) + 4abc \sum a \geq 30 \sum a^2 b^2.$$

This follows by adding Schur's inequality

$$4 \sum a^4 + 4abc \sum a \geq 4 \sum ab(a^2 + b^2)$$

to the inequality

$$15 \sum ab(a^2 + b^2) \geq 30 \sum a^2 b^2.$$

The equality holds for $a = b = c$.

\[\square\]

P 1.96. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

$$\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab} \geq \frac{8}{(a + b + c)^2}.$$

(Vasile Cîrtoaje, 2005)

First Solution. Applying the Cauchy-Schwarz inequality, we have

$$\sum \frac{1}{2a^2 + bc} = \sum \frac{(b + c)^2}{(b + c)^2(2a^2 + 5bc)} \geq \frac{4(a + b + c)^2}{\sum (b + c)^2(22a^2 + 5bc)}.$$

Thus, it suffices to show that

$$(a + b + c)^4 \geq 2 \sum (b + c)^2(2a^2 + bc),$$

which is equivalent to

$$\sum a^4 + 2 \sum ab(a^2 + b^2) + 4abc \sum a \geq 6 \sum a^2 b^2.$$

We will prove the sharper inequality

$$\sum a^4 + 2 \sum ab(a^2 + b^2) + abc \sum a \geq 6 \sum a^2 b^2.$$
This follows by adding Schur’s inequality
\[\sum a^4 + abc \sum a \geq \sum ab(a^2 + b^2) \]
to the inequality
\[3 \sum ab(a^2 + b^2) \geq 6 \sum a^2 b. \]
The equality holds for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. Without loss of generality, we may assume that \(a \geq b \geq c \). Since the equality holds for \(c = 0 \) and \(a = b \), write the inequality as
\[
\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{4c^2 + 2ab} + \frac{1}{4c^2 + 2ab} \geq \frac{8}{(a + b + c)^2}
\]
and then apply the Cauchy-Schwarz inequality. It suffices to prove that
\[
\frac{16}{(2a^2 + bc) + (2b^2 + ca) + (4c^2 + 2ab) + (4c^2 + 2ab)} \geq \frac{8}{(a + b + c)^2},
\]
which is equivalent to the obvious inequality
\[c(a + b - 2c) \geq 0. \]

\[\square \]

P 1.97. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
\[
\frac{1}{a^2 + bc} + \frac{1}{b^2 + ca} + \frac{1}{c^2 + ab} \geq \frac{12}{(a + b + c)^2}.
\]
(Vasile Cirtoaje, 2005)

Solution. Due to homogeneity, we may assume that \(a + b + c = 1 \). On this assumption, write the inequality as
\[
\sum \left(\frac{1}{a^2 + bc} - 1 \right) \geq 9,
\]
\[
\sum \frac{1 - a^2 - bc}{a^2 + bc} \geq 9.
\]
Since
\[1 - a^2 - bc = (a + b + c)^2 - a^2 - bc > 0, \]
by the Cauchy-Schwarz inequality, we have
\[
\sum \frac{1 - a^2 - bc}{a^2 + bc} \geq \frac{[\sum (1 - a^2 - bc)]^2}{\sum (1 - a^2 - bc)(a^2 + bc)}.
\]
Then, it suffices to prove that
\[(3 - \sum a^2 - \sum bc)^2 \geq 9 \sum (a^2 + bc) - 9 \sum (a^2 + bc)^2,\]
which is equivalent to
\[(1 - 4q)(4 - 7q) + 36abc \geq 0,\]
where \(q = ab + bc + ca\). For \(q \leq 1/4\), this inequality is clearly true. Consider further that \(q > 1/4\). By Schur’s inequality of degree three
\[(a + b + c)^3 + 9abc \geq 4(a + b + c)(ab + bc + ca),\]
we get \(1 + 9abc \geq 4q\), and hence \(36abc \geq 16q - 4\). Thus,
\[(1 - 4q)(4 - 7q) + 36abc \geq (1 - 4q)(4 - 7q) + 16q - 4 = 7q(4q - 1) > 0.\]
The equality holds for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\Box\]

P 1.98. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

(a) \(\frac{1}{a^2 + 2bc} + \frac{1}{b^2 + 2ca} + \frac{1}{c^2 + 2ab} \geq \frac{1}{a^2 + b^2 + c^2} + \frac{2}{ab + bc + ca}^{-};\)

(b) \(\frac{a(b + c)}{a^2 + 2bc} + \frac{b(c + a)}{b^2 + 2ca} + \frac{c(a + b)}{c^2 + 2ab} \geq 1 + \frac{ab + bc + ca}{a^2 + b^2 + c^2}.\)

(Darij Grinberg and Vasile Cirtoaje, 2005)

Solution. (a) Write the inequality as
\[\frac{\sum (b^2 + 2ca)(c^2 + 2ab)}{(a^2 + 2bc)(b^2 + 2ca)(c^2 + 2ab)} \geq \frac{ab + bc + ca + 2a^2 + 2b^2 + 2c^2}{(a^2 + b^2 + c^2)(ab + bc + ca)}.\]

Since
\[\sum (b^2 + 2ca)(c^2 + 2ab) = (ab + bc + ca)(ab + bc + ca + 2a^2 + 2b^2 + 2c^2),\]
it suffices to show that
\[(a^2 + b^2 + c^2)(ab + bc + ca)^2 \geq (a^2 + 2bc)(b^2 + 2ca)(c^2 + 2ab),\]
which is just the inequality (a) in P 1.16 in Volume 1. The equality holds for \(a = b\), or \(b = c\), or \(c = a\).
(b) Write the inequality in (a) as
\[\sum \frac{ab + bc + ca}{a^2 + 2bc} \geq 2 + \frac{ab + bc + ca}{a^2 + b^2 + c^2}, \]
or
\[\sum \frac{ab + bc + ca}{a^2 + 2bc} \geq 2 + \frac{ab + bc + ca}{a^2 + b^2 + c^2}. \]
The desired inequality follows by adding this inequality to
\[1 \geq \sum \frac{bc}{a^2 + 2bc}. \]
The last inequality is equivalent to
\[\sum \frac{a^2}{a^2 + 2bc} \geq 1, \]
which follows by applying the AM-GM inequality as follows
\[\sum \frac{a^2}{a^2 + 2bc} \geq \sum \frac{a}{a^2 + b^2 + c^2} = 1. \]
The equality holds for \(a = b = c \).

\[\square \]

P 1.99. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

(a) \[\frac{a}{a^2 + 2bc} + \frac{b}{b^2 + 2ca} + \frac{c}{c^2 + 2ab} \leq \frac{a + b + c}{ab + bc + ca}; \]

(b) \[\frac{ab + bc + ca}{a^2 + 2bc} + \frac{c(a + b)}{b^2 + 2ca} + \frac{c^2 + 2ab}{2ab} \leq 1 + \frac{a^2 + b^2 + c^2}{ab + bc + ca}. \]

(Vasile Cirtoaje, 2008)

Solution. (a) Use the SOS method. Write the inequality as
\[\sum a \left(1 - \frac{ab + bc + ca}{a^2 + 2bc} \right) \geq 0, \]
and
\[\sum \frac{a(a - b)(a - c)}{a^2 + 2bc} \geq 0. \]
Assume that \(a \geq b \geq c \). Since \((c - a)(c - b) \geq 0 \), it suffices to show that
\[\frac{a(a - b)(a - c)}{a^2 + 2bc} + \frac{b(b - a)(b - c)}{b^2 + 2ca} \geq 0. \]
This inequality is equivalent to
\[c(a - b)^2[2a(a - c) + 2b(b - c) + 3ab] \geq 0, \]
which is clearly true. The equality holds for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

(b) Since
\[\frac{a(b + c)}{a^2 + 2bc} = \frac{a(a + b + c)}{a^2 + 2bc} - \frac{a^2}{a^2 + 2bc}, \]
we can write the inequality as
\[(a + b + c)\sum \frac{a}{a^2 + 2bc} \leq 1 + \frac{a^2 + b^2 + c^2}{ab + bc + ca} + \sum \frac{a^2}{a^2 + 2bc}. \]
According to the inequality in (a), it suffices to show that
\[\frac{(a + b + c)^2}{ab + bc + ca} \leq 1 + \frac{a^2 + b^2 + c^2}{ab + bc + ca} + \sum \frac{a^2}{a^2 + 2bc}, \]
which is equivalent to
\[\sum \frac{a^2}{a^2 + 2bc} \geq 1. \]
Indeed,
\[\sum \frac{a^2}{a^2 + 2bc} \geq \sum \frac{a^2}{a^2 + b^2 + c^2} = 1. \]
The equality holds for \(a = b = c \).

□

P 1.100. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

(a) \[\frac{a}{2a^2 + bc} + \frac{b}{2b^2 + ca} + \frac{c}{2c^2 + ab} \geq \frac{a + b + c}{a^2 + b^2 + c^2}; \]

(b) \[\frac{b + c}{2a^2 + bc} + \frac{c + a}{2b^2 + ca} + \frac{a + b}{2c^2 + ab} \geq \frac{6}{a + b + c}. \]

(Vasile Cîrtoaje, 2008)

Solution. Assume that \(a \geq b \geq c \).

(a) Multiplying by \(a + b + c \), we can write the inequality as follows
\[\sum \frac{a(a + b + c)}{2a^2 + bc} \geq \frac{(a + b + c)^2}{a^2 + b^2 + c^2}, \]
Also, it suffices to show that $f(a, b, c)$ holds for $a = b = c$, where

$$f(a, b, c) = \sum a^2(a - b)(a - c) \geq 2a^2 + bc,$$

and for $a = 0$ and $b = c$ (or any cyclic permutation).

(b) We apply the SOS method. Write the inequality as follows

$$\sum \left[\frac{(b + c)(a + b + c)}{2a^2 + bc} - 2 \right] \geq 0,$$

$$\sum \left(\frac{b^2 + ab - 2a^2}{2a^2 + bc} + \frac{c^2 + ca - 2a^2}{2a^2 + bc} \right) \geq 0,$$

$$\sum \left(\frac{(b - a)(b + 2a) + (c - a)(c + 2a)}{2a^2 + bc} \right) \geq 0,$$

$$\sum \left(\frac{(b - a)(b + 2a) + (a - b)(a + 2b)}{2a^2 + bc} \right) \geq 0.$$
\[(a-b)\left(\frac{a+2b}{2b^2+ca} - \frac{b+2a}{2a^2+bc}\right) \geq 0,\]
\[\sum (a-b)^2(2c^2+ab)(a^2+b^2+3ab-ac-bc) \geq 0.\]

Since \[a^2+b^2+3ab-ac-bc \geq a^2+b^2+2ab-ac-bc = (a+b)(a+b-c),\]
it suffices to show that
\[\sum (a-b)^2(2c^2+ab)(a+b)(a+b-c) \geq 0.\]

This inequality is true if
\[(b-c)^2(2a^2+bc)(b+c)(b+c-a) + (c-a)^2(2b^2+ca)(c+a)(c+a-b) \geq 0;\]
that is,
\[(a-c)^2(2b^2+ca)(a+c)(a+c-b) \geq (b-c)^2(2a^2+bc)(b+c)(a-b-c).\]

Since \(a+c \geq b+c\) and \(a+c-b \geq a-b-c\), it is enough to prove that
\[(a-c)^2(2b^2+ca) \geq (b-c)^2(2a^2+bc).\]

We can obtain this inequality by multiplying the inequalities
\[b^2(a-c)^2 \geq a^2(b-c)^2\]
and
\[a^2(2b^2+ca) \geq b^2(2a^2+bc).\]

The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\Box\]

P 1.101. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that
\[\frac{a(b+c)}{a^2+bc} + \frac{b(c+a)}{b^2+ca} + \frac{c(a+b)}{c^2+ab} \geq \frac{(a+b+c)^2}{a^2+b^2+c^2}.\]

(Pham Huu Duc, 2006)
Solution. Assume that \(a \geq b \geq c \) and write the inequality as follows

\[
3 - \frac{(a + b + c)^2}{a^2 + b^2 + c^2} \geq \sum \left(1 - \frac{ab + ac}{a^2 + bc} \right),
\]

\[
2 \sum (a - b)(a - c) \geq (a^2 + b^2 + c^2) \sum \frac{(a - b)(a - c)}{a^2 + bc},
\]

\[
\sum \frac{(a - b)(a - c)(a + b - c)(a - b + c)}{a^2 + bc} \geq 0.
\]

It suffices to show that

\[
\frac{(b - c)(b - a)(b + c - a)(b - c + a)}{b^2 + ca} + \frac{(c - a)(c - b)(c + a - b)(c - a + b)}{c^2 + ab} \geq 0,
\]

which is equivalent to the obvious inequality

\[
\frac{(b - c)^2(c - a + b)^2(a + bc)}{(b^2 + ca)(c^2 + ab)} \geq 0.
\]

The equality holds for \(a = b = c \), and for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square\]

P 1.102. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. If \(k > 0 \), then

\[
\frac{b^2 + c^2 + \sqrt{3}bc}{a^2 + kbc} + \frac{c^2 + a^2 + \sqrt{3}ca}{b^2 + kca} + \frac{a^2 + b^2 + \sqrt{3}ab}{c^2 + kab} \geq \frac{3(2 + \sqrt{3})}{1 + k}.
\]

(Vasile Cîrtoaje, 2013)

Solution. Write the inequality in the form \(f_6(a, b, c) \geq 0 \), where

\[
f_6(a, b, c) = (1 + k) \sum (b^2 + c^2 + \sqrt{3}bc)(b^2 + kca)(c^2 + kab)
\]

\[-3(2 + \sqrt{3})(a^2 + kbc)(b^2 + kca)(c^2 + kab).
\]

Clearly, \(f_6(a, b, c) \) has the same highest coefficient as \(f(a, b, c) \), where

\[
f(a, b, c) = (1 + k) \sum (\sqrt{3}bc - a^2)(b^2 + kca)(c^2 + kab)
\]

\[-3(2 + \sqrt{3})(a^2 + kbc)(b^2 + kca)(c^2 + kab));
\]

therefore,

\[
A = 3(1 + k)^3(\sqrt{3} - 1) - 3(2 + \sqrt{3})(1 + k)^3
\]

\[= -9(1 + k)^3.\]
Since \(A \leq 0 \), according to P 2.76-(a) in Volume 1, it suffices to prove the original inequality for \(b = c = 1 \) and for \(a = 0 \).

In the first case, this inequality is equivalent to

\[
(a - 1)^2 \left[(k + 1)a^2 - \left(1 + \frac{\sqrt{3}}{2} \right) (k - 2)a + \left(k - \frac{1 + \sqrt{3}}{2} \right)^2 \right] \geq 0.
\]

For the nontrivial case \(k > 2 \), we have

\[
(k + 1)a^2 + \left(k - \frac{1 + \sqrt{3}}{2} \right)^2 \geq 2\sqrt{k + 1} \left(k - \frac{1 + \sqrt{3}}{2} \right) a
\]

\[
\geq 2\sqrt{3} \left(k - \frac{1 + \sqrt{3}}{2} \right) a \geq \left(1 + \frac{\sqrt{3}}{2} \right) (k - 2)a.
\]

In the second case \((a = 0) \), the original inequality can be written as

\[
\frac{1}{k} \left(\frac{b}{c} + \frac{c}{b} + \sqrt{3} \right) + \left(\frac{b^2}{c^2} + \frac{c^2}{b^2} \right) \geq \frac{3(2 + \sqrt{3})}{1 + k},
\]

and is true if

\[
\frac{2 + \sqrt{3}}{k} + 2 \geq \frac{3(2 + \sqrt{3})}{1 + k},
\]

which is equivalent to

\[
\left(k - \frac{1 + \sqrt{3}}{2} \right)^2 \geq 0.
\]

The equality holds for \(a = b = c \). If \(k = \frac{1 + \sqrt{3}}{2} \), then the equality holds also for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square\]

P 1.103. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that

\[
\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{8}{a^2 + b^2 + c^2} \geq \frac{6}{ab + bc + ca}.
\]

(Vasile Cîrtoaje, 2013)

Solution. Multiplying by \(a^2 + b^2 + c^2 \), the inequality becomes

\[
\frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} + 11 \geq \frac{6(a^2 + b^2 + c^2)}{ab + bc + ca}.
\]
Since
\[
\left(\frac{a^2}{b^2 + c^2} + \frac{b^2}{c^2 + a^2} + \frac{c^2}{a^2 + b^2} \right) (a^2 b^2 + b^2 c^2 + c^2 a^2) = \]
\[
ar^4 + b^4 + c^4 + a^2 b^2 c^2 \left(\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \right) \geq a^4 + b^4 + c^4,
\]
it suffices to show that
\[
\frac{a^4 + b^4 + c^4}{a^2 b^2 + b^2 c^2 + c^2 a^2} + 11 \geq \frac{6(a^2 + b^2 + c^2)}{ab + bc + ca},
\]
which is equivalent to
\[
\frac{(a^2 + b^2 + c^2)^2}{a^2 b^2 + b^2 c^2 + c^2 a^2} + 9 \geq \frac{6(a^2 + b^2 + c^2)}{ab + bc + ca}.
\]
Clearly, it is enough to prove that
\[
\left(\frac{a^2 + b^2 + c^2}{ab + bc + ca} \right)^2 + 9 \geq \frac{6(a^2 + b^2 + c^2)}{ab + bc + ca},
\]
which is
\[
\left(\frac{a^2 + b^2 + c^2}{ab + bc + ca} - 3 \right)^2 \geq 0.
\]
The equality holds for \(a = 0\) and \(\frac{b}{c} + \frac{c}{b} = 3\) (or any cyclic permutation).

\[\square\]

P 1.104. If \(a, b, c\) are the lengths of the sides of a triangle, then
\[
\frac{a(b + c)}{a^2 + 2bc} + \frac{b(c + a)}{b^2 + 2ca} + \frac{c(a + b)}{c^2 + 2ab} \leq 2.
\]

(Vo Quoc Ba Can and Vasile Cirtoaje, 2010)

Solution. Write the inequality as
\[
\sum \left(1 - \frac{ab + ac}{a^2 + 2bc} \right) \geq 1,
\]
\[
\sum \frac{a^2 + 2bc - ab - ac}{a^2 + 2bc} \geq 1.
\]
Since
\[
a^2 + 2bc - ab - ac = bc - (a - c)(b - a) \geq |a - c||b - a| - (a - c)(b - a) \geq 0,
\]
Symmetric Rational Inequalities

by the Cauchy-Schwarz inequality, we have

\[
\sum a^2 + 2bc - ab - ac \geq \frac{[\sum (a^2 + 2bc - ab - ac)]^2}{\sum (a^2 + 2bc)(a^2 + 2bc - ab - ac)}.
\]

Thus, it suffices to prove that

\[
(a^2 + b^2 + c^2)^2 \geq \sum (a^2 + 2bc)(a^2 + 2bc - ab - ac),
\]

which reduces to the obvious inequality

\[
ab(a - b)^2 + bc(b - c)^2 + ca(c - a)^2 \geq 0.
\]

The equality holds for an equilateral triangle, and for a degenerate triangle with \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.105. If \(a, b, c\) are real numbers, then

\[
\frac{a^2 - bc}{2a^2 + b^2 + c^2} + \frac{b^2 - ca}{2b^2 + c^2 + a^2} + \frac{c^2 - ab}{2c^2 + a^2 + b^2} \geq 0.
\]

(Nguyen Anh Tuan, 2005)

First Solution. Rewrite the inequality as

\[
\sum \left(\frac{1}{2} - \frac{a^2 - bc}{2a^2 + b^2 + c^2} \right) \leq \frac{3}{2},
\]

\[
\sum \frac{(b + c)^2}{2a^2 + b^2 + c^2} \leq 3.
\]

If two of \(a, b, c\) are zero, then the inequality is trivial. Otherwise, applying the Cauchy-Schwarz inequality, we get

\[
\sum \frac{(b + c)^2}{2a^2 + b^2 + c^2} = \sum \frac{(b + c)^2}{(a^2 + b^2) + (a^2 + c^2)}
\]

\[
\leq \sum \left(\frac{b^2}{a^2 + b^2} + \frac{c^2}{a^2 + c^2} \right) = \sum \frac{b^2}{a^2 + b^2} + \sum \frac{a^2}{b^2 + a^2} = 3.
\]

The equality holds for \(a = b = c\).

Second Solution. Use the SOS method. We have

\[
2 \sum \frac{a^2 - bc}{2a^2 + b^2 + c^2} = \sum \frac{(a - b)(a + c) + (a - c)(a + b)}{2a^2 + b^2 + c^2}
\]
\[
\begin{align*}
150 & \quad \text{Vasile Cîrtoaje} \\
\frac{(a-b)(a+c)}{2a^2+b^2+c^2} + \frac{(b-a)(b+c)}{2b^2+c^2+a^2} \\
&= \sum (a-b) \left(\frac{a+c}{2a^2+b^2+c^2} - \frac{b+c}{2b^2+c^2+a^2} \right) \\
&= (a^2 + b^2 + c^2 - ab - bc - ca) \sum \frac{(a-b)^2}{(2a^2+b^2+c^2)(2b^2+c^2+a^2)} \geq 0.
\end{align*}
\]

P 1.106. If \(a, b, c\) are nonnegative real numbers, then
\[
\frac{3a^2 - bc}{2a^2 + b^2 + c^2} + \frac{3b^2 - ca}{2b^2 + c^2 + a^2} + \frac{3c^2 - ab}{2c^2 + a^2 + b^2} \leq \frac{3}{2},
\]
(Vasile Cîrtoaje, 2008)

First Solution. Write the inequality as
\[
\sum \left(\frac{3}{2} - \frac{3a^2 - bc}{2a^2 + b^2 + c^2} \right) \geq 3,
\]
\[
\sum \frac{8bc + 3(b-c)^2}{2a^2 + b^2 + c^2} \geq 6.
\]
By the Cauchy-Schwarz inequality, we have
\[
8bc + 3(b-c)^2 \geq \frac{3[4bc + (b-c)^2]^2}{6bc + (b-c)^2} = \frac{2(b+c)^4}{b^2 + c^2 + 4bc}.
\]
Therefore, it suffices to prove that
\[
\sum \frac{(b+c)^4}{(2a^2 + b^2 + c^2)(b^2 + c^2 + 4bc)} \geq 2.
\]
Using again the Cauchy-Schwarz inequality, we get
\[
\sum \frac{(b+c)^4}{(2a^2 + b^2 + c^2)(b^2 + c^2 + 4bc)} \geq \frac{[\sum (b+c)^2]^2}{\sum (2a^2 + b^2 + c^2)(b^2 + c^2 + 4bc)} = 2.
\]
The equality holds for \(a = b = c\), for \(a = 0\) and \(b = c\), and for \(b = c = 0\) (or any cyclic permutation).

Second Solution. Write the inequality as
\[
\sum \left(\frac{1}{2} - \frac{3a^2 - bc}{2a^2 + b^2 + c^2} \right) \geq 0,
\]
\[
\sum \frac{(b + c + 2a)(b + c - 2a)}{2a^2 + b^2 + c^2} \geq 0,
\]
\[
\sum \frac{(b + c + 2a)(b - a) + (b + c + 2a)(c - a)}{2a^2 + b^2 + c^2} \geq 0,
\]
\[
\sum \frac{(b + c + 2a)(b - a)}{2a^2 + b^2 + c^2} + \sum \frac{(a + 2b)(a - b)}{2b^2 + c^2 + a^2} \geq 0,
\]
\[
\sum (c + a + 2b)(a - b) \left(\frac{c + a + 2b}{2b^2 + c^2 + a^2} - \frac{b + c + 2a}{2a^2 + b^2 + c^2} \right) \geq 0,
\]
\[
\sum (3ab + bc + ca - c^2)(2c^2 + a^2 + b^2)(a - b)^2 \geq 0.
\]
Since \(3ab + bc + ca - c^2 \geq c(a + b - c)\), it suffices to show that
\[
\sum c(a + b - c)(2c^2 + a^2 + b^2)(a - b)^2 \geq 0.
\]
Assume that \(a \geq b \geq c\). It is enough to prove that
\[
(b + c - a)(2a^2 + b^2 + c^2)(b - c) + b(c + a - b)(2b^2 + c^2 + a^2)(c - a) \geq 0;
\]
that is,
\[
b(c + a - b)(2b^2 + c^2 + a^2)(a - c)^2 \geq a(a - b - c)(2a^2 + b^2 + c^2)(b - c)^2.
\]
Since \(c + a - b \geq a - b - c\), it suffices to prove that
\[
b(2b^2 + c^2 + a^2)(a - c)^2 \geq a(2a^2 + b^2 + c^2)(b - c)^2.
\]
We can obtain this inequality by multiplying the inequalities
\[
b^2(a - c)^2 \geq a^2(b - c)^2
\]
and
\[
a(2b^2 + c^2 + a^2) \geq b(2a^2 + b^2 + c^2).
\]
The last inequality is equivalent to
\[
(a - b)((a - b)^2 + ab + c^2) \geq 0.
\]

\[\square\]

P 1.107. If \(a, b, c\) are nonnegative real numbers, then
\[
\frac{(b + c)^2}{4a^2 + b^2 + c^2} + \frac{(c + a)^2}{4b^2 + c^2 + a^2} + \frac{(a + b)^2}{4c^2 + a^2 + b^2} \geq 2.
\]
(Vasile Cîrtoaje, 2005)
Solution. By the Cauchy-Schwarz inequality, we have

\[
\sum \frac{(b + c)^2}{4a^2 + b^2 + c^2} \geq \frac{[\sum (b + c)^2]^2}{\sum (b + c)^2(4a^2 + b^2 + c^2)}
\]

\[
= \frac{2[\sum a^4 + 3 \sum a^2b^2 + 4abc \sum a + 2 \sum ab(a^2 + b^2)]}{\sum a^4 + 5 \sum a^2b^2 + 4abc \sum a + \sum ab(a^2 + b^2)} \geq 2,
\]

since

\[
\sum ab(a^2 + b^2) \geq 2 \sum a^2b^2.
\]

The equality holds for \(a = b = c\), and for \(b = c = 0\) (or any cyclic permutation).

\(\square\)

P 1.108. If \(a, b, c\) are positive real numbers, then

\[(a)\quad \sum \frac{1}{11a^2 + 2b^2 + 2c^2} \leq \frac{3}{5(ab + bc + ca)};\]

\[(b)\quad \sum \frac{1}{4a^2 + b^2 + c^2} \leq \frac{1}{2(a^2 + b^2 + c^2)} + \frac{1}{ab + bc + ca}.\]

(Vasile Cîrtoaje, 2008)

Solution. We will prove that

\[
\sum \frac{k + 2}{ka^2 + b^2 + c^2} \leq \frac{11 - 2k}{a^2 + b^2 + c^2} + \frac{2(k - 1)}{ab + bc + ca}
\]

for any \(k > 1\). Due to homogeneity, we may assume that \(a^2 + b^2 + c^2 = 3\). On this hypothesis, we need to show that

\[
\sum \frac{k + 2}{(k - 1)a^2 + 3} \leq \frac{11 - 2k}{3} + \frac{2(k - 1)}{ab + bc + ca}.
\]

Using the substitution \(m = 3/(k - 1), m > 0\), the inequality can be written as

\[
m(m + 1) \sum \frac{1}{a^2 + m} \leq 3m - 2 + \frac{6}{ab + bc + ca}.
\]

By the Cauchy-Schwarz inequality, we have

\[(a^2 + m)[m + (m + 1 - a)^2] \geq [a \sqrt{m} + \sqrt{m}(m + 1 - a)]^2 = m(m + 1)^2,
\]

and hence

\[
\frac{m(m + 1)}{a^2 + m} \leq \frac{a^2 - 1}{m + 1} + m + 2 - 2a,
\]
\[m(m+1) \sum \frac{1}{a^2 + m} \leq 3(m + 2) - 2 \sum a. \]

Thus, it suffices to show that
\[3(m + 2) - 2 \sum a \leq 3m - 2 + \frac{6}{ab + bc + ca}; \]
that is,
\[(4 - a - b - c)(ab + bc + ca) \leq 3. \]

Let \(p = a + b + c \). Since
\[2(ab + bc + ca) = (a + b + c)^2 - (a^2 + b^2 + c^2) = p^2 - 3, \]
we get
\[6 - 2(4 - a - b - c)(ab + bc + ca) = 6 - (4 - p)(p^2 - 3) = (p - 3)^2(p + 2) \geq 0. \]

This completes the proof. The equality holds for \(a = b = c \).

\[\square \]

P 1.109. If \(a, b, c \) are nonnegative real numbers such that \(ab + bc + ca = 3 \), then
\[\frac{\sqrt{a}}{b + c} + \frac{\sqrt{b}}{c + a} + \frac{\sqrt{c}}{a + b} \geq \frac{3}{2}. \]

(Vasile Cîrtoaje, 2006)

Solution. By the Cauchy-Schwarz inequality, we have
\[\sum \frac{\sqrt{a}}{b + c} \geq \left(\sum \frac{a^{3/4}}{b + c} \right)^2 \geq \frac{1}{6} \left(\sum a^{3/4} \right)^2. \]

Thus, it suffices to show that
\[a^{3/4} + b^{3/4} + c^{3/4} \geq 3, \]
which follows immediately by Remark 1 from the proof of the inequality in P 2.33 in Volume 1. The equality occurs for \(a = b = c = 1 \).

Remark. Analogously, according to Remark 2 from the proof of P 2.33 in Volume 1, we can prove that
\[\frac{a^k}{b + c} + \frac{b^k}{c + a} + \frac{c^k}{a + b} \geq \frac{3}{2} \]
for all \(k \geq 3 - \frac{4 \ln 2}{\ln 3} \approx 0.476 \). For \(k = 3 - \frac{4 \ln 2}{\ln 3} \), the equality occurs for \(a = b = c = 1 \), and also for \(a = 0 \) and \(b = c = \sqrt{3} \) (or any cyclic permutation).

\[\square \]
P 1.110. If \(a, b, c\) are nonnegative real numbers such that \(ab + bc + ca \geq 3\), then

\[
\frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c} \geq \frac{1}{1+b+c} + \frac{1}{1+c+a} + \frac{1}{1+a+b}.
\]

(Vasile Cîrtoaje, 2014)

Solution. Denote

\[E(a, b, c) = \frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c} - \frac{1}{1+b+c} - \frac{1}{1+c+a} - \frac{1}{1+a+b}.\]

Consider first the case \(ab + bc + ca = 3\). We will show that

\[
\frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c} \geq \frac{1}{1+b+c} + \frac{1}{1+c+a} + \frac{1}{1+a+b}.
\]

By direct calculation, we can show that the left inequality is equivalent to \(abc \leq 1\). Indeed, applying the AM-GM inequality, we get

\[3 = ab + bc + ca \geq 3\sqrt{abc}.\]

Also, the right inequality is equivalent to

\[a + b + c \geq 2 + abc.\]

Since \(abc \leq 1\), it suffices to show that

\[a + b + c \geq 3.\]

Indeed,

\[(a + b + c)^2 \geq 3(ab + bc + ca) = 9.\]

Consider further that \(ab + bc + ca > 3\). Without loss of generality, assume that \(a \geq b \geq c\), \(a > 1\). For \(c \geq 1\), that is, \(a \geq b \geq c \geq 1\), the desired inequality follows by summing the obvious inequalities

\[
\frac{1}{2+a} \geq \frac{1}{1+c+a},
\]

\[
\frac{1}{2+b} \geq \frac{1}{1+a+b},
\]

\[
\frac{1}{2+c} \geq \frac{1}{1+b+c}.
\]

Therefore, assume now that \(c < 1\). Consider the cases \(b + c \geq 2\) and \(b + c < 2\).

Case 1: \(b + c \geq 2\), \(a > 1\), \(c < 1\). We will show that

\[E(a, b, c) \geq E(1, b, c) \geq 0.\]
We have
\[
E(a, b, c) - E(1, b, c) = \left(\frac{1}{2 + a} - \frac{1}{3} \right) + \left(\frac{1}{2 + b} - \frac{1}{1 + a + b} \right) + \left(\frac{1}{2 + c} - \frac{1}{1 + c + a} \right)
\]
\[
= (a - 1) \left[\frac{-1}{3(2 + a)} + \frac{1}{(2 + b)(1 + a + b)} + \frac{1}{(2 + c)(1 + c + a)} \right]
\]
\[
> (a - 1) \left[\frac{-1}{3(2 + a)} + \frac{1}{(2 + c)(1 + c + a)} \right]
\]
\[
= \frac{(a - 1)(1 - c)(4 + c + a)}{3(2 + a)(2 + c)(1 + c + a)} > 0
\]
and
\[
E(1, b, c) = \frac{b + c - 2}{3(1 + b + c)} \geq 0.
\]

Case 2: \(b + c < 2, a > 1, c < 1\). From \(b + c < 2\), it follows that
\[
bc \leq \left(\frac{b + c}{2} \right)^2 < 1.
\]
For fixed \(b\) and \(c\), define the function
\[
f(x) = E(x, b, c).
\]
Since
\[
f'(x) = \frac{-1}{(2 + x)^2} + \frac{1}{(1 + c + x)^2} + \frac{1}{(1 + x + b)^2} > \frac{-1}{(2 + x)^2} + \frac{1}{(1 + c + x)^2}
\]
\[
= \frac{(1 - c)(3 + 2x + c)}{(2 + x)^2(1 + c + x)^2} > 0,
\]
f(x) is strictly increasing for \(x \geq 0\). Since
\[
a > \frac{3 - bc}{b + c},
\]
we have \(f(a) > f\left(\frac{3 - bc}{b + c} \right)\). Therefore, it suffices to prove that \(f\left(\frac{3 - bc}{b + c} \right) \geq 0\), which is equivalent to \(E(a, b, c) \geq 0\) for \(a = \frac{3 - bc}{b + c}\), that is, \(ab + bc + ca = 3\). But this was proved in the first part of the proof. So, the proof is completed. The equality occurs for \(a = b = c = 1\). □
P 1.111. If \(a, b, c\) are the lengths of the sides of a triangle, then

\[
\begin{align*}
(a) & \quad \frac{a^2 - bc}{3a^2 + b^2 + c^2} + \frac{b^2 - ca}{3b^2 + c^2 + a^2} + \frac{c^2 - ab}{3c^2 + a^2 + b^2} \leq 0; \\
(b) & \quad \frac{a^4 - b^2c^2}{3a^4 + b^4 + c^4} + \frac{b^4 - c^2a^2}{3b^4 + c^4 + a^4} + \frac{c^4 - a^2b^2}{3c^4 + a^4 + b^4} \leq 0.
\end{align*}
\]

Nguyen Anh Tuan and Vasile Cirtoaje, 2006

Solution. (a) Apply the SOS method. We have

\[
2 \sum \frac{a^2 - bc}{3a^2 + b^2 + c^2} = \sum \frac{(a - b)(a + c) + (a - c)(a + b)}{3a^2 + b^2 + c^2} \\
\hspace*{1cm} = \sum \frac{(a - b)(a + c)}{3a^2 + b^2 + c^2} + \sum \frac{(b - a)(b + c)}{3b^2 + c^2 + a^2} \\
\hspace*{1cm} = \sum (a - b) \left(\frac{a + c}{3a^2 + b^2 + c^2} - \frac{b + c}{3b^2 + c^2 + a^2} \right) \\
\hspace*{1cm} = (a^2 + b^2 + c^2 - 2ab - 2bc - 2ca) \sum \frac{(a - b)^2}{(3a^2 + b^2 + c^2)(3b^2 + c^2 + a^2)}.
\]

Since

\[a^2 + b^2 + c^2 - 2ab - 2bc - 2ca = a(a - b - c) + b(b - c - a) + c(c - a - b) \leq 0,\]

the conclusion follows. The equality holds for an equilateral triangle, and for a degenerate triangle with \(a = 0\) and \(b = c\) (or any cyclic permutation).

(b) Using the same way as above, we get

\[
2 \sum \frac{a^4 - b^2c^2}{3a^4 + b^4 + c^4} = A \sum \frac{(a^2 - b^2)^2}{(3a^2 + b^2 + c^2)(3b^2 + c^2 + a^2)},
\]

where

\[
A = a^4 + b^4 + c^4 - 2a^2b^2 - 2b^2c^2 - 2c^2a^2 \\
\hspace*{1cm} = -(a + b + c)(a + b - c)(b + c - a)(c + a - b) \leq 0.
\]

The equality holds for an equilateral triangle, and for a degenerate triangle with \(a = b+c\) (or any cyclic permutation). \(\Box\)
P 1.112. If \(a, b, c\) are the lengths of the sides of a triangle, then

\[
\frac{bc}{4a^2 + b^2 + c^2} + \frac{ca}{4b^2 + c^2 + a^2} + \frac{ab}{4c^2 + a^2 + b^2} \geq \frac{1}{2}.
\]

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2010)

Solution. We apply the SOS method. Write the inequality as

\[
\sum \left(\frac{2bc}{4a^2 + b^2 + c^2} - \sum \frac{b^2c^2}{a^2b^2 + b^2c^2 + c^2a^2} \right) \geq 0,
\]

\[
\sum \frac{bc(2a^2 - bc)(b - c)^2}{4a^2 + b^2 + c^2} \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c\). Then, it suffices to prove that

\[
\frac{c(2b^2 - ca)(c - a)^2}{4b^2 + c^2 + a^2} + \frac{b(2c^2 - ab)(a - b)^2}{4c^2 + a^2 + b^2} \geq 0.
\]

Since

\[
2b^2 - ca \geq c(b + c) - ca = c(b + c - a) \geq 0
\]

and

\[
(2b^2 - ca) + (2c^2 - ab) = 2(b^2 + c^2) - a(b + c) \geq (b + c)^2 - a(b + c)
\]

\[
= (b + c)(b + c - a) \geq 0,
\]

it is enough to show that

\[
\frac{c(a - c)^2}{4b^2 + c^2 + a^2} \geq \frac{b(a - b)^2}{4c^2 + a^2 + b^2}.
\]

This follows by multiplying the inequalities

\[
c^2(a - c)^2 \geq b^2(a - b)^2
\]

and

\[
\frac{b}{4b^2 + c^2 + a^2} \geq \frac{c}{4c^2 + a^2 + b^2}.
\]

These inequalities are true, since

\[
c(a - c) - b(a - b) = (b - c)(b + c - a) \geq 0,
\]

\[
b(4c^2 + a^2 + b^2) - c(4b^2 + c^2 + a^2) = (b - c)[(b - c)^2 + a^2 - bc] \geq 0.
\]

The equality occurs for an equilateral triangle, and for a degenerate triangle with \(a = 0\) and \(b = c\) (or any cyclic permutation). \(\square\)
P 1.113. If \(a, b, c \) are the lengths of the sides of a triangle, then

\[
\frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{1}{a^2 + b^2} \leq \frac{9}{2(ab + bc + ca)}.
\]

(Vo Quoc Ba Can, 2008)

Solution. Apply the SOS method. Write the inequality as

\[
\sum \left[\frac{3}{2} - \frac{ab + bc + ca}{b^2 + c^2} \right] \geq 0,
\]

\[
\sum \frac{3(b^2 + c^2) - 2(ab + bc + ca)}{b^2 + c^2} \geq 0,
\]

\[
\sum \frac{3b(b - a) + 3c(c - a) + c(a - b) + b(a - c)}{b^2 + c^2} \geq 0,
\]

\[
\sum \frac{(a - b)(c - 3b) + (a - c)(b - 3c)}{b^2 + c^2} \geq 0,
\]

\[
\sum \frac{(a - b)(c - 3b) + (a - c)(b - 3c)}{b^2 + c^2} + \sum \frac{b - a)(c - 3a)}{c^2 + a^2} \geq 0,
\]

\[
\sum (a^2 + b^2)(a - b)^2(c + c^2 - 3ab) \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c \). Since \(ab + ac + 3a^2 - 3bc > 0 \), it suffices to prove that

\[
(a^2 + b^2)(a - b)^2(ca + cb + 3c^2 - 3ab) + (a^2 + c^2)(a - c)^2(ab + bc + 3b^2 - 3ac) \geq 0,
\]

or, equivalently,

\[
(a^2 + c^2)(a - c)^2(ab + bc + 3b^2 - 3ac) \geq (a^2 + b^2)(a - b)^2(3ab - 3c^2 - ca - cb).
\]

Since

\[
ab + bc + 3b^2 - 3ac = a \left(\frac{bc + 3b^2}{a} + b - 3c \right) \geq a \left(\frac{bc + 3b^2}{b + c} + b - 3c \right)
\]

\[
= \frac{a(b - c)(4b + 3c)}{b + c} \geq 0
\]

and

\[
(ab + bc + 3b^2 - 3ac) - (3ab - 3c^2 - ca - cb) = 3(b^2 + c^2) + 2bc - 2a(b + c)
\]

\[
\geq 3(b^2 + c^2) + 2bc - 2(b + c)^2 = (b - c)^2 \geq 0,
\]
it suffices to show that
\[(a^2 + c^2)(a - c)^2 \geq (a^2 + b^2)(a - b)^2.\]

This is true, since it is equivalent to \((b - c)A \geq 0\), where
\[
A = 2a^3 - 2a^2(b + c) + 2a(b^2 + bc + c^2) - (b + c)(b^2 + c^2) \\
= 2a\left(a - \frac{b + c}{2}\right)^2 + \frac{a(3b^2 + 2bc + 3c^2)}{2} - (b + c)(b^2 + c^2) \\
\geq \frac{b(3b^2 + 2bc + 3c^2)}{2} - (b + c)(b^2 + c^2) \\
= \frac{(b - c)(b^2 + bc + 2c^2)}{2} \geq 0.
\]
The equality occurs for an equilateral triangle, and for a degenerate triangle with \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.114. If \(a, b, c\) are the lengths of the sides of a triangle, then

(a) \[\frac{a + b}{a - b} + \frac{b + c}{b - c} + \frac{c + a}{c - a} > 5;\]

(b) \[\frac{a^2 + b^2}{a^2 - b^2} + \frac{b^2 + c^2}{b^2 - c^2} + \frac{c^2 + a^2}{c^2 - a^2} \geq 3.\]

(Vasile Cîrtoaje, 2003)

Solution. Since the inequalities are symmetric, we consider that \(a > b > c\).

(a) Let \(x = a - c\) and \(y = b - c\). From \(a > b > c\) and \(a \leq b + c\), it follows that \(x > y > 0\) and \(c \geq x - y\). We have

\[
\frac{a + b}{a - b} + \frac{b + c}{b - c} + \frac{c + a}{c - a} = \frac{2c + x + y}{x - y} + \frac{2c + y}{y} - \frac{2c + x}{x} \\
= 2c\left(\frac{1}{x - y} + \frac{1}{y} - \frac{1}{x}\right) + \frac{x + y}{x - y} > \frac{2c}{y} + \frac{x + y}{x - y} \\
\geq \frac{2(x - y)}{y} + \frac{x + y}{x - y} = 2\left(\frac{x - y}{y} + \frac{y}{x - y}\right) + 1 \geq 5.
\]
(b) We will show that
\[
\frac{a^2 + b^2}{a^2 - b^2} + \frac{b^2 + c^2}{b^2 - c^2} + \frac{c^2 + a^2}{c^2 - a^2} \geq 3;
\]
that is,
\[
\frac{b^2}{a^2 - b^2} + \frac{c^2}{b^2 - c^2} \geq \frac{a^2}{a^2 - c^2}.
\]
Since
\[
\frac{a^2}{a^2 - c^2} \leq \frac{(b + c)^2}{a^2 - c^2},
\]
it suffices to prove that
\[
\frac{b^2}{a^2 - b^2} + \frac{c^2}{b^2 - c^2} \geq \frac{(b + c)^2}{a^2 - c^2}.
\]
This is equivalent to each of the following inequalities:
\[
b^2 \left(\frac{1}{a^2 - b^2} - \frac{1}{a^2 - c^2} \right) + c^2 \left(\frac{1}{b^2 - c^2} - \frac{1}{a^2 - c^2} \right) \geq \frac{2bc}{a^2 - c^2},
\]
\[
b^2 \frac{(b^2 - c^2)}{a^2 - b^2} + c^2 \frac{(a^2 - b^2)}{b^2 - c^2} \geq 2bc,
\]
\[
[b(b^2 - c^2) - c(a^2 - b^2)]^2 \geq 0.
\]
This completes the proof. If \(a > b > c \), then the equality holds for a degenerate triangle with \(a = b + c \) and \(b/c = x_1 \), where \(x_1 \approx 1.5321 \) is the positive root of the equation \(x^3 - 3x - 1 = 0 \).

\[\square\]

P 1.115. If \(a, b, c \) are the lengths of the sides of a triangle, then
\[
\frac{b + c}{a} + \frac{c + a}{b} + \frac{a + b}{c} + 3 \geq 6 \left(\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \right).
\]

Solution. We apply the SOS method. Write the inequality as
\[
\sum \frac{b + c}{a} - 6 \geq 3 \left(\sum \frac{2a}{b + c} - 3 \right).
\]
Since
\[
\sum \frac{b + c}{a} - 6 = \sum \left(\frac{b}{c} + \frac{c}{b} \right) - 6 = \sum \frac{(b - c)^2}{bc}
\]
and
\[
\sum \frac{2a}{b + c} - 3 = \sum \frac{2a - b - c}{b + c} = \sum \frac{a - b}{b + c} + \sum \frac{a - c}{b + c}
\]
we can rewrite the inequality as
\[\sum a(b + c)S_a(b - c)^2 \geq 0, \]
where
\[S_a = a(a + b + c) - 2bc. \]
Without loss of generality, assume that \(a \geq b \geq c \). Since \(S_a > 0 \),
\[S_b = b(a + b + c) - 2ca = (b - c)(a + b + c) + c(b + c - a) \geq 0 \]
and
\[\sum a(b + c)S_a(b - c)^2 \geq b(c + a)S_b(c - a)^2 + c(a + b)S_c(a - b)^2 \geq (a - b)^2[b(c + a)S_b + c(a + b)S_c], \]
it suffices to prove that
\[b(c + a)S_b + c(a + b)S_c \geq 0. \]
This is equivalent to each of the following inequalities
\[(a + b + c)[a(b^2 + c^2) + bc(b + c)] \geq 2abc(2a + b + c), \]
\[a(a + b + c)(b - c)^2 + (a + b + c)[2abc + bc(b + c)] \geq 2abc(2a + b + c), \]
\[a(a + b + c)(b - c)^2 + bc(2a + b + c)(b + c - a) \geq 0. \]
Since the last inequality is true, the proof is completed. The equality occurs for an equilateral triangle, and for a degenerate triangle with \(a/2 = b = c \) (or any cyclic permutation).

\[\square \]

P 1.116. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[\sum \frac{3a(b + c) - 2bc}{(b + c)(2a + b + c)} \geq \frac{3}{2}. \]
(\textit{Vasile Cirtoaje, 2009})

Solution. Use the SOS method. Write the inequality as follows
\[\sum \left[\frac{3a(b + c) - 2bc}{(b + c)(2a + b + c)} - \frac{1}{2} \right] \geq 0, \]
the conclusion follows. The equality holds for \(a = b\), or \(b = c\), or \(c = a\).

\(\square\)

P 1.17. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

\[
\sum \frac{a(b + c) - 2bc}{(b + c)(3a + b + c)} \geq 0.
\]

\((\text{Vasile Cirtoaje}, 2009)\)

Solution. We apply the SOS method. Since

\[
\sum \frac{a(b + c) - 2bc}{(b + c)(3a + b + c)} = \sum \frac{b(a - c) + c(a - b)}{(b + c)(3a + b + c)}
\]

\[
= \sum \frac{c(b - a)}{(c + a)(3b + c + a)} + \sum \frac{c(a - b)}{(b + c)(3a + b + c)}
\]

\[
= \sum \frac{c(a + b - c)(a - b)^2}{(b + c)(c + a)(3a + b + c)(3b + c + a)},
\]

the inequality is equivalent to

\[
\sum c(a + b)(3c + a + b)(a + b - c)(a - b)^2 \geq 0.
\]

Without loss of generality, assume that \(a \geq b \geq c\). Since \(a + b - c \geq 0\), it suffices to show that

\[
b(c + a)(3b + c + a)(c + a - b)(a - c)^2 \geq a(b + c)(3a + b + c)(a - b - c)(b - c)^2.
\]
This is true since
\[
\begin{align*}
 c + a - b &\geq a - b - c, \\
 b^2(a - c)^2 &\geq a^2(b - c)^2, \\
 c + a &\geq b + c, \\
 a(b + c + a) &\geq b(3a + b + c).
\end{align*}
\]
The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

P 1.118. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 \geq 3\). Prove that
\[
\frac{a^5 - a^2}{a^5 + b^2 + c^2} + \frac{b^5 - b^2}{b^5 + c^2 + a^2} + \frac{c^5 - c^2}{c^5 + a^2 + b^2} \geq 0.
\]

(Vasile Cîrtoaje, 2005)

Solution. The inequality is equivalent to
\[
\frac{1}{a^5 + b^2 + c^2} + \frac{1}{b^5 + c^2 + a^2} + \frac{1}{c^5 + a^2 + b^2} \leq \frac{3}{a^2 + b^2 + c^2}.
\]
Setting \(a = tx, b = ty\) and \(c = tz\), where \(t > 0\) and \(x, y, z > 0\) such that \(x^2 + y^2 + z^2 = 3\), the condition \(a^2 + b^2 + c^2 \geq 3\) implies \(t \geq 1\), and the inequality becomes
\[
\frac{1}{t^3x^5 + y^2 + z^2} + \frac{1}{t^3y^5 + z^2 + x^2} + \frac{1}{t^3z^5 + x^2 + y^2} \leq 1.
\]
We see that it suffices to prove this inequality for \(t = 1\), when it becomes
\[
\frac{1}{x^5 - x^2 + 3} + \frac{1}{y^5 - y^2 + 3} + \frac{1}{z^5 - z^2 + 3} \leq 1.
\]
Without loss of generality, assume that \(x \geq y \geq z\). There are two cases to consider.

Case 1: \(z \leq y \leq x \leq \sqrt{2}\). The desired inequality follows by adding the inequalities
\[
\frac{1}{x^5 - x^2 + 3} \leq \frac{3 - x^2}{6}, \quad \frac{1}{y^5 - y^2 + 3} \leq \frac{3 - y^2}{6}, \quad \frac{1}{z^5 - z^2 + 3} \leq \frac{3 - z^2}{6}.
\]
We have
\[
\frac{1}{x^5 - x^2 + 3} - \frac{3 - x^2}{6} = \frac{(x - 1)^2(x^5 + 2x^4 - 3x^2 - 6x - 3)}{6(x^5 - x^2 + 3)} \leq 0,
\]
since
\[
x^5 + 2x^4 - 3x^2 - 6x - 3 = x^2(x^3 + 2x^2 - 3 - \frac{6}{x} + \frac{3}{x^2})
\]
\[
\leq x^2(2\sqrt{2} + 4 - 3 - 3\sqrt{2} - \frac{3}{2}) = -x^2(\sqrt{2} + \frac{1}{2}) < 0.
\]

Case 2: \(x > \sqrt{2}\). From \(x^2 + y^2 + z^2 = 3\), it follows that \(y^2 + z^2 < 1\). Since
\[
\frac{1}{x^5 - x^2 + 3} < \frac{1}{(2\sqrt{2} - 1)x^2 + 3} < \frac{1}{2(2\sqrt{2} - 1) + 3} < \frac{1}{6}
\]
and
\[
\frac{1}{y^5 - y^2 + 3} + \frac{1}{z^5 - z^2 + 3} < \frac{1}{3 - y^2 + \frac{1}{3 - z^2}},
\]
it suffices to prove that
\[
\frac{1}{3 - y^2} + \frac{1}{3 - z^2} \leq \frac{5}{6}.
\]
Indeed, we have
\[
\frac{1}{3 - y^2} + \frac{1}{3 - z^2} - \frac{5}{6} = \frac{9(y^2 + z^2 - 1) - 5y^2z^2}{6(3 - y^2)(3 - z^2)} < 0,
\]
which completes the proof. The equality occurs for \(a = b = c = 1\).

Remark. Since \(abc \geq 1\) involves \(a^2 + b^2 + c^2 \geq 3\sqrt[3]{a^2b^2c^2} \geq 3\), the original inequality is also true for \(abc \geq 1\), which is a problem from IMO-2005 (by Hojoo Lee). A proof of this inequality is the following:
\[
\sum \frac{a^5 - a^2}{a^5 + b^2 + c^2} \geq \sum \frac{a^3 - 1}{a(a^2 + b^2 + c^2)}
\]
\[
= \frac{1}{a^2 + b^2 + c^2} \sum (a^2 - \frac{1}{a}) \geq \frac{1}{a^2 + b^2 + c^2} \sum (a^2 - bc)
\]
\[
= \frac{1}{2(a^2 + b^2 + c^2)} \sum (a - b)^2 \geq 0.
\]

P 1.119. Let \(a, b, c\) be positive real numbers such that \(a^2 + b^2 + c^2 = a^3 + b^3 + c^3\). Prove that
\[
\frac{a^2}{b + c} + \frac{b^2}{c + a} + \frac{c^2}{a + b} \geq \frac{3}{2}.
\]

(Pham Huu Duc, 2008)
First Solution. By the Cauchy-Schwarz inequality, we have
\[
\sum a^2 \geq \frac{(\sum a^3)^2}{\sum a^4(b + c)} = \frac{(\sum a^3)(\sum a^2)}{(\sum a^2)(\sum ab) - abc \sum a^2}.
\]
Therefore, it is enough to show that
\[
2(\sum a^3)(\sum a^2) + 3abc \sum a^2 \geq 3(\sum a^3)(\sum ab).
\]
Write this inequality as follows
\[
3(\sum a^3)(\sum a^2 - \sum ab) - (\sum a^3 - 3abc) \sum a^2 \geq 0,
\]
\[
3(\sum a^3)(\sum a^2 - \sum ab) - (\sum a)(\sum a^2 - \sum ab) \sum a^2 \geq 0,
\]
\[
(\sum a^2 - \sum ab)[3 \sum a^3 - (\sum a)(\sum a^2)] \geq 0.
\]
The last inequality is true, since
\[
2(\sum a^2 - \sum ab) = \sum (a - b)^2 \geq 0
\]
and
\[
3 \sum a^3 - (\sum a)(\sum a^2) = \sum (a^3 + b^3) - \sum ab(a + b) = \sum (a + b)(a - b)^2 \geq 0.
\]
The equality occurs for \(a = b = c = 1\).

Second Solution. Write the inequality in the homogeneous form \(A \geq B\), where
\[
A = 2 \sum \frac{a^2}{b + c} - \sum a, \quad B = \frac{3(a^2 + b^3 + c^3)}{a^2 + b^2 + c^2} - \sum a.
\]
Since
\[
A = \sum \frac{a(a - b) + a(a - c)}{b + c} = \sum \frac{a(a - b)}{b + c} + \sum \frac{b(b - a)}{c + a} = (a + b + c) \sum \frac{(a - b)^2}{(b + c)(c + a)}
\]
and
\[
B = \frac{\sum(a^3 + b^3) - \sum ab(a + b)}{a^2 + b^2 + c^2} = \frac{\sum(a + b)(a - b)^2}{a^2 + b^2 + c^2},
\]
we can write the inequality as
\[
\sum \left[\frac{a + b + c}{(b + c)(c + a)} - \frac{a + b}{a^2 + b^2 + c^2} \right] (a - b)^2 \geq 0,
\]
\[
(a^3 + b^3 + c^3 - 2abc) \sum \frac{(a - b)^2}{(b + c)(c + a)} \geq 0.
\]
Since \(a^3 + b^3 + c^3 \geq 3abc\), the conclusion follows.
P 1.120. If \(a, b, c \in [0, 1]\), then

\[
\begin{align*}
(a) & \quad \frac{a}{bc + 2} + \frac{b}{ca + 2} + \frac{c}{ab + 2} \leq 1; \\
(b) & \quad \frac{ab}{2bc + 1} + \frac{bc}{2ca + 1} + \frac{ca}{2ab + 1} \leq 1.
\end{align*}
\]

Solution. (a) It suffices to show that

\[
\frac{a}{abc + 2} + \frac{b}{abc + 2} + \frac{c}{abc + 2} \leq 1,
\]

which is equivalent to

\[abc + 2 \geq a + b + c.\]

We have

\[abc + 2 - a - b - c = (1 - b)(1 - c) + (1 - a)(1 - bc) \geq 0.\]

The equality holds for \(a = b = c = 1\), and for \(a = 0\) and \(b = c = 1\) (or any cyclic permutation).

(b) It suffices to prove that

\[
\frac{ab}{2abc + 1} + \frac{bc}{2abc + 1} + \frac{ca}{2abc + 1} \leq 1;
\]

that is,

\[2abc + 1 \geq ab + bc + ca.\]

Since

\[a + b + c - (ab + bc + ca) = a(1 - b) + b(1 - c) + c(1 - a) \geq 0,\]

we have

\[2abc + 1 - ab - bc - ca \geq 2abc + 1 - a - b - c = (1 - b)(1 - c) + (1 - a)(1 - bc) \geq 0.\]

The equality holds for \(a = b = c = 1\), and for \(a = 0\) and \(b = c = 1\) (or any cyclic permutation).

\[\square\]

P 1.121. Let \(a, b, c\) be positive real numbers such that \(a + b + c = 2\). Prove that

\[
5(1 - ab - bc - ca)\left(\frac{1}{1 - ab} + \frac{1}{1 - bc} + \frac{1}{1 - ca}\right) + 9 \geq 0.
\]

Solution. (Vasile Cirtoaje, 2011)
Solution. Write the inequality as

\[
24 - \frac{5a(b + c)}{1 - bc} - \frac{5b(c + a)}{1 - ca} - \frac{5c(a + b)}{1 - ab} \geq 0.
\]

Since

\[
4(1 - bc) \geq 4 - (b + c)^2 = (a + b + c)^2 - (b + c)^2 = a(a + 2b + 2c),
\]

it suffices to show that

\[
6 - 5 \left(\frac{b + c}{a + 2b + 2c} - \frac{c + a}{b + 2c + 2a} - \frac{a + b}{c + 2a + 2b} \right) \geq 0,
\]

which is equivalent to

\[
\sum 5 \left(1 - \frac{b + c}{a + 2b + 2c} \right) \geq 9,
\]

\[
5(a + b + c) \sum \frac{1}{a + 2b + 2c} \geq 9,
\]

\[
\left[\sum (a + 2b + 2c) \right] \left[\sum \frac{1}{a + 2b + 2c} \right] \geq 9.
\]

The last inequality follows immediately from the AM-HM inequality. The equality holds for \(a = b = c = 2/3\).

□

P 1.122. Let \(a, b, c\) be nonnegative real numbers such that \(a + b + c = 2\). Prove that

\[
\frac{2 - a^2}{2 - bc} + \frac{2 - b^2}{2 - ca} + \frac{2 - c^2}{2 - ab} \leq 3.
\]

(Vasile Cîrtoaje, 2011)

First Solution. Write the inequality as follows

\[
\sum \left(1 - \frac{2 - a^2}{2 - bc} \right) \geq 0,
\]

\[
\sum \frac{a^2 - bc}{2 - bc} \geq 0,
\]

\[
\sum (a^2 - bc)(2 - ca)(2 - ab) \geq 0,
\]

\[
\sum (a^2 - bc)[4 - 2a(b + c) + a^2bc] \geq 0,
\]

\[
4 \sum (a^2 - bc) - 2 \sum a(b + c)(a^2 - bc) + abc \sum a(a^2 - bc) \geq 0.
\]
By virtue of the AM-GM inequality,

\[\sum a(a^2 - bc) = a^3 + b^3 + c^3 - 3abc \geq 0. \]

Then, it suffices to prove that

\[2 \sum (a^2 - bc) \geq \sum (a(b + c)(a^2 - bc)). \]

Indeed, we have

\[
\begin{align*}
\sum a(b + c)(a^2 - bc) &= \sum a^3(b + c) - abc \sum (b + c) \\
&= \sum a(b^3 + c^3) - abc \sum (b + c) = \sum a(b + c)(b - c)^2 \\
&\leq \sum \left[\frac{a + (b + c)}{2} \right]^2 (b - c)^2 = (b - c)^2 = 2 \sum (a^2 - bc).
\end{align*}
\]

The equality holds for \(a = b = c = \frac{2}{3} \), and for \(a = 0 \) and \(b = c = 1 \) (or any cyclic permutation).

Second Solution. We apply the SOS method. Write the inequality as follows

\[
\begin{align*}
\sum &\frac{a^2 - bc}{2 - bc} \geq 0, \\
\sum &\frac{(a - b)(a + c) + (a - c)(a + b)}{2 - bc} \geq 0, \\
\sum &\frac{(a - b)(a + c)}{2 - bc} + \sum \frac{(b - a)(b + c)}{2 - ca} \geq 0, \\
\sum &\frac{(a - b)^2(2 - c(a + b) - c^2)}{(2 - bc)(2 - ca)} \geq 0, \\
\sum & (a - b)^2(2 - ab)(1 - c) \geq 0.
\end{align*}
\]

Assuming that \(a \geq b \geq c \), it suffices to prove that

\[(b - c)^2(2 - bc)(1 - a) + (c - a)^2(2 - ca)(1 - b) \geq 0. \]

Since \(2(1 - b) = a - b + c \geq 0 \) and \((c - a)^2 \geq (b - c)^2 \), it suffices to show that

\[(2 - bc)(1 - a) + (2 - ca)(1 - b) \geq 0. \]

We have

\[
\begin{align*}
(2 - bc)(1 - a) + (2 - ca)(1 - b) &= 4 - 2(a + b) - c(a + b) + 2abc \\
&\geq 4 - (a + b)(2 + c) \geq 4 - \left(\frac{(a + b) + (2 + c)}{2} \right)^2 = 0.
\end{align*}
\]
P 1.123. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that
\[
\frac{3 + 5a^2}{3 - bc} + \frac{3 + 5b^2}{3 - ca} + \frac{3 + 5c^2}{3 - ab} \geq 12.
\]
(Vasile Cîrtoaje, 2010)

Solution. Use the SOS method. Write the inequality as follows
\[
\sum \left(\frac{3 + 5a^2}{3 - bc} - 4 \right) \geq 0,
\]
\[
\sum \frac{5a^2 + 4bc - 9}{3 - bc} \geq 0,
\]
\[
\sum \frac{4a^2 - b^2 - c^2 - 2ab + 2bc - 2ca}{3 - bc} \geq 0,
\]
\[
\sum \frac{(2a^2 - b^2 - c^2) + 2(a - b)(a - c)}{3 - bc} \geq 0,
\]
\[
\sum \frac{([a - b](a + b) + [a - b](a - c)) + [(a - c)(a + c) + (a - c)(a - b)]}{3 - bc} \geq 0,
\]
\[
\sum \frac{(a - b)(2a + b - c) + (a - c)(2a + c - b)}{3 - bc} \geq 0,
\]
\[
\sum \frac{(a - b)(2a + b - c) + (b - a)(2b + a - c)}{3 - ca} \geq 0,
\]
\[
\sum \frac{(a - b)^2[3 - 2c(a + b) + c^2]}{(3 - bc)(3 - ca)} \geq 0,
\]
\[
\sum \frac{(a - b)^2(c - 1)^2}{(3 - bc)(3 - ca)} \geq 0.
\]
The equality holds for $a = b = c = 1$, and for $a = 0$ and $b = c = 3/2$ (or any cyclic permutation).

\(\square\)

P 1.124. Let a, b, c be nonnegative real numbers such that $a + b + c = 2$. If
\[
-\frac{1}{7} \leq m \leq \frac{7}{8},
\]
then
\[
\frac{a^2 + m}{3 - 2bc} + \frac{b^2 + m}{3 - 2ca} + \frac{c^2 + m}{3 - 2ab} \geq \frac{3(4 + 9m)}{19}.
\]
(Vasile Cîrtoaje, 2010)
Solution. We apply the SOS method. Write the inequality as
\[
\sum \left(\frac{a^2 + m}{3 - 2bc} - \frac{4 + 9m}{19} \right) \geq 0,
\]
\[
\sum \frac{19a^2 + 2(4 + 9m)bc - 12 - 8m}{3 - 2bc} \geq 0.
\]
Since
\[
19a^2 + 2(4 + 9m)bc - 12 - 8m = 19a^2 + 2(4 + 9m)bc - (3 + 2m)(a + b + c)^2
\]
\[
= (16 - 2m)a^2 - (3 + 2m)(b^2 + c^2 + 2ab + 2ac) + 2(1 + 7m)bc
\]
\[
= (3 + 2m)(2a^2 - b^2 - c^2) + 2(5 - 3m)(a^2 + bc - ab - ac) + (4 - 10m)(ab + ac - 2bc)
\]
\[
= (3 + 2m)(a^2 - b^2) + (5 - 3m)(a - b)(a - c) + (4 - 10m)c(a - b)
\]
\[
+ (3 + 2m)(a^2 - c^2) + (5 - 3m)(a - c)(a - b) + (4 - 10m)b(a - c)
\]
\[
= (a - b)B + (a - c)C,
\]
where
\[
B = (8 - m)a + (3 + 2m)b - (1 + 7m)c,
\]
\[
C = (8 - m)a + (3 + 2m)c - (1 + 7m)b,
\]
the inequality can be written as
\[
B_1 + C_1 \geq 0,
\]
where
\[
B_1 = \sum \frac{(a - b)[(8 - m)a + (3 + 2m)b - (1 + 7m)c]}{3 - 2bc},
\]
\[
C_1 = \sum \frac{(b - a)[(8 - m)b + (3 + 2m)a - (1 + 7m)c]}{3 - 2ca}.
\]
We have
\[
B_1 + C_1 = \sum \frac{(a - b)^2E_c}{(3 - 2bc)(3 - 2ca)},
\]
where
\[
E_c = 3(5 - 3m) - 2(8 - m)c(a + b) + 2(1 + 7m)c^2
\]
\[
= 6(2m + 3)c^2 - 4(8 - m)c + 3(5 - 3m)
\]
\[
= 6(2m + 3) \left[c - \frac{8 - m}{3(2m + 3)} \right]^2 + \frac{(1 + 7m)(7 - 8m)}{3(2m + 3)}.
\]
Since \(E_c \geq 0 \) for \(-1/7 \leq m \leq 7/8\), we get \(B_1 + C_1 \geq 0 \). Thus, the proof is completed. The equality holds for \(a = b = c = 2/3 \). When \(m = -1/7 \), the equality holds for
$a = b = c = 2/3$, and for $a = 0$ and $b = c = 1$ (or any cyclic permutation). When $m = 7/8$, the equality holds for $a = b = c = 2/3$, and for $a = 1$ and $b = c = 1/2$ (or any cyclic permutation).

Remark. The inequalities in P 1.123 and P 1.124 are particular cases ($k = 3$ and $k = 8/3$, respectively) of the following more general result:

- Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. For $0 < k \leq 3$ and $m_1 \leq m \leq m_2$, where

$$m_1 = \begin{cases} -\infty, & 0 < k \leq \frac{3}{2} \\ \frac{(3-k)(4-k)}{2(3-2k)}, & \frac{3}{2} < k \leq 3 \end{cases},$$

$$m_2 = \frac{36 - 4k - k^2 + 4(9-k)\sqrt{3(3-k)}}{72 + k},$$

then

$$\frac{a^2 + mbc}{9 - kbc} + \frac{b^2 + mca}{9 - kca} + \frac{c^2 + mab}{9 - kab} \geq \frac{3(1 + m)}{9 - k},$$

with equality for $a = b = c = 1$. When $m = m_1$ and $3/2 < k \leq 3$, the equality holds also for

$$a = 0, \quad b = c = \frac{3}{2}.$$

When $m = m_2$, the equality holds also for

$$a = \frac{3k - 6 + 2\sqrt{3(3-k)}}{k}, \quad b = c = \frac{3 - \sqrt{3(3-k)}}{k}.$$

\[\square\]

P 1.125. Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that

$$\frac{47 - 7a^2}{1 + bc} + \frac{47 - 7b^2}{1 + ca} + \frac{47 - 7c^2}{1 + ab} \geq 60.$$

(Vasile Cirtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as follows

$$\sum \left(\frac{47 - 7a^2}{1 + bc} - 20 \right) \geq 0,$$
\[\sum \frac{27 - 7a^2 - 20bc}{1 + bc} \geq 0, \]
\[\sum \frac{3(a + b + c)^2 - 7a^2 - 20bc}{1 + bc} \geq 0, \]
\[\sum \frac{-3(2a^2 - b^2 - c^2) + 2(a - b)(a - c) + 8(ab - 2bc + ca)}{1 + bc} \geq 0, \]
\[\sum \frac{-3(a - b)(a + b) + (a - b)(a - c) + 8c(a - b)}{1 + bc} + \sum \frac{-3(a - c)(a + c) + (a - c)(a - b) + 8b(a - c)}{1 + bc} \geq 0, \]
\[\sum \frac{(a - b)(-2a - 3b + 7c)}{1 + bc} + \sum \frac{(a - c)(-2a - 3c + 7b)}{1 + bc} \geq 0, \]
\[\sum \frac{(a - b)(-2a - 3b + 7c)}{1 + bc} + \sum \frac{(b - a)(-2b - 3a + 7c)}{1 + ca} \geq 0, \]
\[\sum \frac{(a - b)^2[1 - 2c(a + b) + 7c^2]}{(1 + bc)(1 + ca)} \geq 0, \]
\[\sum \frac{(a - b)^2(3c - 1)^2}{(1 + bc)(1 + ca)} \geq 0, \]

The equality holds for \(a = b = c = 1 \), and for \(a = 7/3 \) and \(b = c = 1/3 \) (or any cyclic permutation).

Remark. The inequality in P 1.125 is a particular cases \(k = 9 \) of the following more general result:

- Let \(a, b, c \) be nonnegative real numbers such that \(a + b + c = 3 \). For \(k > 0 \) and \(m \geq m_1 \), where

\[
m_1 = \begin{cases}
 \frac{36 + 4k - k^2 + 4(9 + k)\sqrt{3(3 + k)}}{72 - k}, & k \neq 72 \\
 \frac{238}{5}, & k = 72
\end{cases},
\]

then

\[\frac{a^2 + mbc}{9 + kbc} + \frac{b^2 + mca}{9 + kca} + \frac{c^2 + mab}{9 + kab} \leq \frac{3(1 + m)}{9 + k}, \]

with equality for \(a = b = c = 1 \). When \(m = m_1 \), the equality holds also for

\[a = \frac{3k + 6 - 2\sqrt{3(3 + k)}}{k}, \quad b = c = \frac{\sqrt{3(3 + k)} - 3}{k}. \]
Let a, b, c be nonnegative real numbers such that $a + b + c = 3$. Prove that

$$\frac{26 - 7a^2}{1 + bc} + \frac{26 - 7b^2}{1 + ca} + \frac{26 - 7c^2}{1 + ab} \leq \frac{57}{2}.$$

(Vasile Cîrtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows

$$\sum \left(\frac{19}{2} - \frac{26 - 7a^2}{1 + bc} \right) \geq 0,$$

$$\sum \frac{14a^2 + 19bc - 33}{1 + bc} \geq 0,$$

$$\sum \frac{42a^2 + 57bc - 11(a + b + c)^2}{1 + bc} \geq 0,$$

$$\sum \frac{11(2a^2 - b^2 - c^2) + 9(a - b)(a - c) - 13(ab - 2bc + ca)}{1 + bc} \geq 0,$$

$$\sum \frac{22(a - b)(a + b) + 9(a - b)(a - c) - 26c(a - b) + 22(a - c)(a + c) + 9(a - c)(a - b) - 26b(a - c)}{1 + bc} \geq 0,$$

$$\sum \frac{(a - b)(31a + 22b - 35c)}{1 + bc} + \sum \frac{(a - c)(31a + 22c - 35b)}{1 + bc} \geq 0,$$

$$\sum \frac{(a - b)(31a + 22b - 35c)}{1 + bc} + \sum \frac{(b - a)(31b + 22a - 35c)}{1 + ca} \geq 0,$$

$$\sum \frac{(a - b)^2 (9 + 31c(a + b) - 35c^2)}{(1 + bc)(1 + ca)} \geq 0,$$

$$\sum (a - b)^2 (1 + ab)(1 + 11c)(3 - 2c) \geq 0.$$

Assume that $a \geq b \geq c$. Since $3 - 2c > 0$, it suffices to show that

$$(b - c)^2 (1 + bc)(1 + 11a)(3 - 2a) + (c - a)^2 (1 + ab)(1 + 11b)(3 - 2b) \geq 0;$$

that is,

$$(a - c)^2 (1 + ab)(1 + 11b)(3 - 2b) \geq (b - c)^2 (1 + bc)(1 + 11a)(2a - 3).$$

Since $3 - 2b = a - b + c \geq 0$, we get this inequality by multiplying the inequalities

$$3 - 2b \geq 2a - 3,$$

$$a(1 + ab) \geq b(1 + bc),$$
\[a(1 + 11b) \geq b(1 + 11a), \]
\[b^2(a - c)^2 \geq a^2(b - c)^2. \]
The equality holds for \(a = b = c = 1 \), and for \(a = 0 \) and \(b = c = 3/2 \) (or any cyclic permutation).

Remark. The inequalities in P 1.126 is a particular cases \((k = 9)\) of the following more general result:

- Let \(a, b, c \) be nonnegative real numbers such that \(a + b + c = 3 \). For \(k > 0 \) and \(m \leq m_2 \), where
 \[m_2 = \frac{(3 + k)(4 + k)}{2(3 + 2k)}, \]
 then
 \[\frac{a^2 + mbc}{9 + kbc} + \frac{b^2 + mca}{9 + kca} + \frac{c^2 + mab}{9 + kab} \geq \frac{3(1 + m)}{9 + k}, \]
with equality for \(a = b = c = 1 \). When \(m = m_2 \), the equality holds also for \(a = 0 \) and \(b = c = 3/2 \) (or any cyclic permutation).

\[\square \]

P 1.127. Let \(a, b, c \) be nonnegative real numbers, no all are zero. Prove that

\[\sum \frac{5a(b + c) - 6bc}{a^2 + b^2 + c^2 + bc} \leq 3. \]

(Vasile Cirtoaje, 2010)

First Solution. Apply the SOS method. If two of \(a, b, c \) are zero, then the inequality is trivial. Consider further that \(a^2 + b^2 + c^2 = 1 \), \(a \geq b \geq c \), \(b > 0 \), and write the inequality as follows

\[\sum \left[1 - \frac{5a(b + c) - 6bc}{a^2 + b^2 + c^2 + bc} \right] \geq 0, \]
\[\sum \frac{a^2 + b^2 + c^2 - 5a(b + c) + 7bc}{a^2 + b^2 + c^2 + bc} \geq 0, \]
\[\sum \frac{(7b + 2c - a)(c - a) - (7c + 2b - a)(a - b)}{1 + bc} \geq 0, \]
\[\sum \frac{(7c + 2a - b)(a - b)}{1 + ca} - \sum \frac{(7c + 2b - a)(a - b)}{1 + bc} \geq 0, \]
\[\sum (a - b)^2(1 + ab)(3 + ac + bc - 7c^2) \geq 0. \]
Symmetric Rational Inequalities

Since
\[3 + ac + bc - 7c^2 = 3a^2 + 3b^2 + ac + bc - 4c^2 > 0,\]
it suffices to prove that
\[(1 + bc)(3 + ab + ac - 7a^2)(b - c)^2 + (1 + ac)(3 + ab + bc - 7b^2)(a - c)^2 \geq 0.\]

Since
\[3 + ab + ac - 7b^2 = 3(a^2 - b^2) + 3c^2 + b(a - b) + bc \geq 0\]
and \(1 + ac \geq 1 + bc\), it is enough to show that
\[(3 + ab + ac - 7a^2)(b - c)^2 + (3 + ab + bc - 7b^2)(a - c)^2 \geq 0.\]

From \(b(a - c) \geq a(b - c) \geq 0\), we get \(b^2(a - c)^2 \geq a^2(b - c)^2\), and hence \(b(a - c)^2 \geq a(b - c)^2\). Thus, it suffices to show that
\[b(3 + ab + ac - 7a^2) + a(3 + ab + bc - 7b^2) \geq 0.\]

This is true if
\[b(3 + ab - 7a^2) + a(3 + ab - 7b^2) \geq 0.\]

Indeed,
\[b(3 + ab - 7a^2) + a(3 + ab - 7b^2) = 3(a + b)(1 - 2ab) \geq 0,\]
since
\[1 - 2ab = (a - b)^2 + c^2 \geq 0.\]
The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

Second Solution. Without loss of generality, assume that \(a^2 + b^2 + c^2 = 1\) and \(a \leq b \leq c\).

Setting \(p = a + b + c\), \(q = ab + bc + ca\) and \(r = abc\), the inequality becomes
\[\sum \frac{5q - 11bc}{1 + bc} \leq 3,\]
\[3 \prod (1 + bc) + \sum (11bc - 5q)(1 + ca)(1 + ab) \geq 0,\]
\[3(1 + q + pr + r^2) + 11(q + 2pr + 3r^2) - 5q(3 + 2q + pr) \geq 0,\]
\[36r^2 + 5(5 - q)pr + 3 - q - 10q^2 \geq 0.\]

Since \(p^2 - 2q = 1\), the inequality has the homogeneous form
\[36r^2 + 5(5p^2 - 11q)pr + 3(p^2 - 2q)^3 - q(p^2 - 2q)^2 - 10q^2(p^2 - 2q) \geq 0.\]

According to P 2.57-(a) in Volume 1, for fixed \(p\) and \(q\), the product \(r = abc\) is minimal when \(b = c\) or \(a = 0\). Therefore, since \(5p^2 - 11q > 0\), it suffices to prove the inequality for \(a = 0\), and for \(b = c = 1\). For \(a = 0\), the original inequality becomes
\[-6bc \leq \frac{10bc}{b^2 + c^2 + bc} \leq 3,\]
which reduces to
\[(b - c)^2(3b^2 + 5bc + 3b^2) \geq 0,\]
while for \(b = c = 1\), we get
\[\frac{10a - 6}{a^2 + 3} + 2 \frac{5 - a}{a^2 + a + 2} \leq 3,\]
which is equivalent to
\[a(3a + 1)(a - 1)^2 \geq 0.\]

Remark. Similarly, we can prove the following generalization:
- Let \(a, b, c\) be nonnegative real numbers, no all are zero. If \(k > 0\), then
 \[
 \sum \frac{(2k + 3)a(b + c) + (k + 2)(k - 3)bc}{a^2 + b^2 + c^2 + kbc} \leq 3k,
 \]
with equality for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\(\square\)

P 1.128. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero, and let
\[x = \frac{a^2 + b^2 + c^2}{ab + bc + ca}.\]

Prove that
\[
(a) \quad \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} + \frac{1}{2} \geq x + \frac{1}{x};
\]
\[
(b) \quad 6 \left(\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \right) \geq 5x + \frac{4}{x};
\]
\[
(c) \quad \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} - \frac{3}{2} \geq \frac{1}{3} \left(x - \frac{1}{x} \right).
\]

(Vasile Cirtoaje, 2011)

Solution. We will prove the more general inequality
\[
\frac{2a}{b + c} + \frac{2b}{c + a} + \frac{2c}{a + b} + 1 - 3k \geq (2 - k)x + \frac{2(1 - k)}{x},
\]
where \(0 \leq k \leq (21 + 6\sqrt{6})/25\). For \(k = 0\), \(k = 1/3\) and \(k = 4/3\), we get the inequalities in (a), (b) and (c), respectively. Let \(p = a + b + c\) and \(q = ab + bc + ca\). Since \(x = (p^2 - 2q)/q\), we can write the inequality as follows
\[
\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq f(p, q),
\]
\[
\sum_{cyc} \left(\frac{a}{b+c} + 1 \right) \geq 3 + f(p, q),
\]
\[
p\left(\frac{p^2 + q}{pq - abc}\right) \geq 3 + f(p, q).
\]

According to P 2.57-(a) in Volume 1, for fixed \(p\) and \(q\), the product \(abc\) is minimal when \(b = c\) or \(a = 0\). Therefore, it suffices to prove the inequality for \(a = 0\), and for \(b = c = 1\). For \(a = 0\), using the substitution \(y = b/c + c/b\), the desired inequality becomes

\[
2y + 1 - 3k \geq (2 - k)y + \frac{2(1 - k)}{y},
\]

\[
\frac{(y - 2)[k(y - 1) + 1]}{y} \geq 0.
\]

Since \(y \geq 2\), this inequality is clearly true. For \(b = c = 1\), the desired inequality becomes

\[
a + \frac{4}{a + 1} + 1 - 3k \geq \frac{(2 - k)(a^2 + 2)}{2a + 1} + \frac{2(1 - k)(2a + 1)}{a^2 + 2},
\]

which is equivalent to

\[
a(a - 1)^2[ka^2 + 3(1 - k)a + 6 - 4k] \geq 0.
\]

For \(0 \leq k \leq 1\), this is obvious, and for \(1 < k \leq (21 + 6\sqrt{5})/25\), we have

\[
ka^2 + 3(1 - k)a + 6 - 4k \geq [2\sqrt{k(6 - 4k) + 3(1 - k)}]a \geq 0.
\]

The equality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.129. If \(a, b, c\) are real numbers, then

\[
\frac{1}{a^2 + 7(b^2 + c^2)} + \frac{1}{b^2 + 7(c^2 + a^2)} + \frac{1}{c^2 + 7(a^2 + b^2)} \leq \frac{9}{5(a + b + c)^2}.
\]

*(Vasile Cîrtoaje, 2008)

Solution. Let \(p = a + b + c\) and \(q = ab + bc + ca\). Write the inequality as \(f_6(a, b, c) \geq 0\), where

\[
f_6(a, b, c) = 9 \prod \{a^2 + 7b^2 + 7c^2\} - 5p^2 \sum (b^2 + 7c^2 + 7a^2)(c^2 + 7a^2 + 7b^2).
\]

Since

\[
\prod \{a^2 + 7b^2 + 7c^2\} = \prod \{7(p^2 - 2q) - 6a^2\},
\]

\[
f_6(a, b, c) = 9 \prod \{7(p^2 - 2q) - 6a^2\} - 5p^2 \sum (b^2 + 7c^2 + 7a^2)(c^2 + 7a^2 + 7b^2).
\]

Since the inequality holds for \(a = b = c\), and for \(a = 0\) and \(b = c\) (or any cyclic permutation), the proof is complete.
\(f_6(a, b, c) \) has the highest coefficient
\[
A = 9(-6)^3 < 0.
\]
According to P 1.75 in Volume 1, it suffices to prove the original inequality for \(b = c = 1 \), when the inequality reduces to
\[
(a - 1)^2(a - 4)^2 \geq 0.
\]
Thus, the proof is completed. The equality holds for \(a = b = c \), and for \(a/4 = b = c \) (or any cyclic permutation).

\[\Box\]

P 1.130. If \(a, b, c \) are real numbers, then
\[
\frac{bc}{3a^2 + b^2 + c^2} + \frac{ca}{3b^2 + c^2 + a^2} + \frac{ab}{3c^2 + a^2 + b^2} \leq \frac{3}{5}.
\]
(Vasile Cîrtoaje and Pham Kim Hung, 2005)

Solution. Write the inequality as \(f_6(a, b, c) \geq 0 \), where
\[
f_6(a, b, c) = 3 \prod (3a^2 + b^2 + c^2) - 5 \sum bc(3b^2 + c^2 + a^2)(3c^2 + a^2 + b^2).
\]
Let \(p = a + b + c \) and \(q = ab + bc + ca \). From
\[
f_6(a, b, c) = 3 \prod (2a^2 + p^2 - 2q) - 5 \sum bc(2b^2 + p^2 - 2q)(2c^2 + p^2 - 2q),
\]
it follows that \(f_6(a, b, c) \) has the same highest coefficient \(A \) as
\[
24a^2b^2c^2 - 20 \sum b^3c^3;
\]
that is,
\[
A = 24 - 60 < 0.
\]
According to P 1.75 in Volume 1, it suffices to prove the original inequality for \(b = c = 1 \), when the inequality is equivalent to
\[
(a - 1)^2(3a - 2)^2 \geq 0.
\]
Thus, the proof is completed. The equality holds for \(a = b = c \), and for \(3a/2 = b = c \) (or any cyclic permutation).

Remark. The inequality in P 1.130 is a particular case \((k = 3) \) of the following more general result (Vasile Cîrtoaje, 2008):

- **Let** \(a, b, c \) **be real numbers. If** \(k > 1 \), **then**
\[
\sum \frac{k(k - 3)a^2 + 2(k - 1)bc}{ka^2 + b^2 + c^2} \leq \frac{3(k + 1)(k - 2)}{k + 2},
\]
with equality for \(a = b = c \), and for \(ka/2 = b = c \) (or any cyclic permutation).

\[\Box\]
P 1.131. If \(a, b, c\) are real numbers such that \(a + b + c = 3\), then

\[
\begin{align*}
(1) & \quad \frac{1}{2 + b^2 + c^2} + \frac{1}{2 + c^2 + a^2} + \frac{1}{2 + a^2 + b^2} \leq \frac{3}{4}; \\
(2) & \quad \frac{1}{8 + 5(b^2 + c^2)} + \frac{1}{8 + 5(c^2 + a^2)} + \frac{1}{8 + 5(a^2 + b^2)} \leq \frac{1}{6}.
\end{align*}
\]

(Vasile Cîrtoaje, 2006, 2009)

Solution. (a) Rewrite the inequality as follows

\[
\sum \left(\frac{1}{2 + b^2 + c^2} - \frac{1}{2} \right) \leq \frac{3}{4} - \frac{3}{2},
\]

\[
\sum \frac{b^2 + c^2}{2 + b^2 + c^2} \geq \frac{3}{2}.
\]

By the Cauchy-Schwarz inequality, we have

\[
\sum \frac{b^2 + c^2}{2 + b^2 + c^2} \geq \frac{(\sum \sqrt{b^2 + c^2})^2}{\sum (2 + b^2 + c^2)} = \sum a^2 + \sum \sqrt{(a^2 + b^2)(a^2 + c^2)}
\]

Thus, it suffices to show that

\[
2 \sum \sqrt{(a^2 + b^2)(a^2 + c^2)} \geq \sum a^2 + 9.
\]

Indeed, applying again the Cauchy-Schwarz inequality, we get

\[
2 \sum \sqrt{(a^2 + b^2)(a^2 + c^2)} \geq 2 \sum (a^2 + bc) = \sum a^2 + (\sum a)^2 = \sum a^2 + 9.
\]

The equality holds for \(a = b = c = 1\).

(b) Denote \(p = a + b + c\) and \(q = ab + bc + ca\), we write the inequality in the homogeneous form

\[
\frac{1}{8p^2 + 45(b^2 + c^2)} + \frac{1}{8p^2 + 45(c^2 + a^2)} + \frac{1}{8p^2 + 45(a^2 + b^2)} \leq \frac{1}{6p^2},
\]

which is equivalent to \(f_6(a, b, c) \geq 0\), where

\[
f_6(a, b, c) = \prod (53p^2 - 90q - 45a^2)
\]

\[
-6p^2 \sum (53p^2 - 90q - 45b^2)(53p^2 - 90q - 45c^2).
\]

Clearly, \(f_6(a, b, c)\) has the highest coefficient

\[
A = (-45)^3 < 0.
\]
By P 1.75 in Volume 1, it suffices to prove the original inequality for \(b = c \). In this case, the inequality is equivalent to
\[
(a - 1)^2(a - 13)^2 \geq 0.
\]
The equality holds for \(a = b = c = 1 \), and for \(a = 13/5 \) and \(b = c = 1/5 \) (or any cyclic permutation).

\[\square\]

P 1.132. If \(a, b, c \) are real numbers, then
\[
\frac{(a + b)(a + c)}{a^2 + 4(b^2 + c^2)} + \frac{(b + c)(b + a)}{b^2 + 4(c^2 + a^2)} + \frac{(c + a)(c + b)}{c^2 + 4(a^2 + b^2)} \leq \frac{4}{3}.
\]
(Vasile Cîrtoaje, 2008)

Solution. Let \(p = a + b + c \) and \(q = ab + bc + ca \). Write the inequality as \(f_6(a, b, c) \geq 0 \), where
\[
f_6(a, b, c) = 4 \prod (a^2 + 4b^2 + 4c^2) \]
\[
-3 \sum(a + b)(a + c)(b^2 + 4c^2 + 4a^2)(c^2 + 4a^2 + 4b^2)
\]
\[
= 4 \prod(4p^2 - 8q - 3a^2) - 3 \sum(a^2 + q)(4p^2 - 8q - 3b^2)(4p^2 - 8q - 3c^2).
\]
Thus, \(f_6(a, b, c) \) has the highest coefficient
\[
A = 4(-3)^3 - 3^4 < 0.
\]

By P 1.75 in Volume 1, it suffices to prove the original inequality for \(b = c = 1 \), when the inequality is equivalent to
\[
(a - 1)^2(2a - 7)^2 \geq 0.
\]
The equality holds for \(a = b = c \), and for \(2a/7 = b = c \) (or any cyclic permutation).

\[\square\]

P 1.133. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[
\sum \frac{1}{(b + c)(7a + b + c)} \leq \frac{1}{2(ab + bc + ca)}.
\]
(Vasile Cîrtoaje, 2009)
First Solution. Write the inequality as
\[
\sum \left[1 - \frac{4(ab + bc + ca)}{(b + c)(7a + b + c)} \right] \geq 1,
\]
\[
\sum \frac{(b - c)^2 + 3a(b + c)}{(b + c)(7a + b + c)} \geq 1.
\]

By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{(b - c)^2 + 3a(b + c)}{(b + c)(7a + b + c)} \geq \frac{(a + b + c)^4}{\sum [(b - c)^2 + 3a(b + c)](b + c)(7a + b + c)}.
\]

Therefore, it suffices to show that
\[
4(a + b + c)^4 \geq \sum (b^2 + c^2 - 2bc + 3ca + 3ab)(b + c)(7a + b + c).
\]

Write this inequality as
\[
\sum a^4 + abc \sum a + 3 \sum ab(a^2 + b^2) - 8 \sum a^2 b^2 \geq 0,
\]
\[
\sum a^4 + abc \sum a - \sum ab(a^2 + b^2) + 4 \sum ab(a - b)^2 \geq 0.
\]

Since \(\sum a^4 + abc \sum a - \sum ab(a^2 + b^2) \geq 0 \) (Schur’s inequality of degree four), the conclusion follows. The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. Let \(p = a + b + c \) and \(q = ab + bc + ca \). We need to prove that
\[
f_6(a, b, c) = \prod (b + c)(7a + b + c)
\]
\[
-2(ab + bc + ca) \sum (a + b)(a + c)(7b + c + a)(7c + a + b)
\]
\[
= \prod (p - a)(p + 6a - 2q) \sum (p - b)(p - c)(p + 6b)(p + 6c).
\]

Clearly, \(f_6(a, b, c) \) has the highest coefficient \(A = (-6)^3 < 0 \). Thus, by P 2.76-(a) in Volume 1, it suffices to prove the original inequality for \(b = c = 1 \), and for \(a = 0 \). For \(b = c = 1 \), the inequality reduces to \(a(a - 1)^2 \geq 0 \), which is obviously true. For \(a = 0 \), the inequality can be written as
\[
\frac{1}{(b + c)^2} + \frac{1}{c(7b + c)} + \frac{1}{b(7c + b)} \leq \frac{1}{2bc},
\]
\[
\frac{1}{(b + c)^2} + \frac{b^2 + c^2 + 14bc}{bc[7(b^2 + c^2) + 50bc]} \leq \frac{1}{2bc},
\]
\[
\frac{1}{x + 2} + \frac{x + 14}{7x + 50} \leq \frac{1}{2},
\]
where \(x = b/c + c/b \), \(x \geq 2 \). This reduces to the obvious inequality \((x - 2)(5x + 28) \geq 0 \).
P 1.134. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero. Prove that

\[
\sum \frac{1}{b^2 + c^2 + 4a(b + c)} \leq \frac{9}{10(ab + bc + ca)}.
\]

(Vasile Cîrtoaje, 2009)

Solution. Let \(p = a + b + c\) and \(q = ab + bc + ca\). We need to prove that \(f_6(a, b, c) \geq 0\), where

\[
f_6(a, b, c) = 9 \prod [b^2 + c^2 + 4a(b + c)]
- 10(ab + bc + ca) \sum [a^2 + b^2 + 4c(a + b)][a^2 + c^2 + 4b(a + c)]
= 9 \prod (p^2 + 2q - a^2 - 4bc) - 10q \sum (p^2 + 2q - c^2 - 4ab)(p^2 + 2q - b^2 - 4ca).
\]

Clearly, \(f_6(a, b, c)\) has the same highest coefficient \(A\) as \(f(a, b, c)\), where

\[
f(a, b, c) = -9 \prod (a^2 + 4bc) = -9(65a^2b^2c^2 + 16abc \sum a^3 + 4 \sum a^3b^3);
\]

that is,

\[
A = -9(65 + 48 + 12) < 0.
\]

Thus, by P 2.76-(a) in Volume 1, it suffices to prove the original inequality for \(b = c = 1\), and for \(a = 0\). For \(b = c = 1\), the inequality reduces to \(a(a - 1)^2 \geq 0\), which is obviously true. For \(a = 0\), the inequality becomes

\[
\frac{1}{b^2 + c^2} + \frac{1}{b^2 + 4bc} + \frac{1}{c^2 + 4bc} \leq \frac{9}{10bc},
\]

\[
\frac{1}{b^2 + c^2} + \frac{b^2 + c^2 + 8bc}{4bc(b^2 + c^2) + 17b^2c^2} \leq \frac{9}{10bc},
\]

\[
\frac{1}{x} + \frac{x + 8}{4x + 17} \leq \frac{9}{10},
\]

where \(x = b/c + c/b\), \(x \geq 2\). The inequality is true, since it is equivalent to \((x - 2)(26x + 85) \geq 0\). The equality holds for \(a = b = c\), and also for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[
\square
\]

P 1.135. If \(a, b, c\) are nonnegative real numbers such that \(a + b + c = 3\), then

\[
\frac{1}{3 - ab} + \frac{1}{3 - bc} + \frac{1}{3 - ca} \leq \frac{9}{2(ab + bc + ca)}.
\]

(Vasile Cîrtoaje, 2011)
First Solution. We apply the SOS method. Write the inequality as

$$\sum \left(\frac{3}{2} - \frac{ab + bc + ca}{3 - bc} \right) \geq 0.$$
$$\sum \frac{9 - 2(a + c) - 5bc}{3 - bc} \geq 0,$$
$$\sum \frac{a^2 + b^2 + c^2 - 3bc}{3 - bc} \geq 0.$$

Since

$$2(a^2 + b^2 + c^2 - 3bc) = 2(a^2 - bc) + 2(b^2 + c^2 - ab - ac) + 2(ab + ac - 2bc)$$
$$= (a - b)(a + c) + (a - c)(a + b) - 2b(a - b) - 2c(a - c) + 2c(a - b) + 2b(a - c)$$
$$= (a - b)(a - 2b + 3c) + (a - c)(a - 2c + 3b),$$

the required inequality is equivalent to

$$\sum \frac{(a - b)(a - 2b + 3c) + (a - c)(a - 2c + 3b)}{3 - bc} \geq 0,$$
$$\sum \frac{(a - b)(a - 2b + 3c)}{3 - bc} + \sum \frac{(b - a)(b - 2a + 3c)}{3 - ca} \geq 0,$$
$$\sum \frac{(a - b)^2[9 - c(a + b + 3c)]}{(3 - bc)(3 - ca)} \geq 0,$$
$$\sum (a - b)^2(3 - ab)(3 + c)(3 - 2c) \geq 0.$$

Without loss of generality, assume that $a \geq b \geq c$. Then it suffices to prove that

$$(b - c)^2(3 - bc)(3 + a)(3 - 2a) + (c - a)^2(3 - ca)(3 + b)(3 - 2b) \geq 0,$$

which is equivalent to

$$(a - c)^2(3 - ac)(3 + b)(3 - 2b) \geq (b - c)^2(3 - bc)(a + 3)(2a - 3).$$

Since $3 - 2b = a - b + c \geq 0$, we can obtain this inequality by multiplying the inequalities

$$b^2(a - c)^2 \geq a^2(b - c)^2,$$
$$a(3 - ac) \geq b(3 - bc) \geq 0,$$
$$a(3 + b)(3 - 2b) \geq b(a + 3)(2a - 3) \geq 0.$$

We have

$$a(3 - ac) - b(3 - bc) = (a - b)[3 - c(a + b)] = (a - b)(3 - 3c + c^2)$$
$$\geq 3(a - b)(1 - c) \geq 0.$$
Also, since \(a + b \leq a + b + c = 3 \), we have

\[
a(3 + b)(3 - 2b) - b(a + 3)(2a - 3) = 9(a + b) - 6ab - 2ab(a + b) \geq 9(a + b) - 12ab \geq 3(a + b)^2 - 12ab = 3(a - b)^2 \geq 0.
\]

The equality holds for \(a = b = c = 1 \), and for \(a = 0 \) and \(b = c = 3/2 \) (or any cyclic permutation).

Second Solution. Let \(p = a + b + c \) and \(q = ab + bc + ca \). We need to prove that \(f_6(a, b, c) \geq 0 \), where

\[
f_6(a, b, c) = 3 \prod (p^2 - 3bc) - 2q \sum (p^2 - 2ca)(p^2 - 2ab).
\]

Clearly, \(f_6(a, b, c) \) has the highest coefficient

\[A = 3(-3)^3 < 0.\]

Thus, by P 2.76-(a) in Volume 1, it suffices to prove the original inequality for \(b = c \), and for \(a = 0 \). For \(b = c = 3 - a \), the inequality reduces to

\[a(9 - a)(a - 1)^2 \geq 0,
\]

which is obviously true. For \(a = 0 \), which yields \(b + c = 3 \), the inequality can be written as

\[(9 - 4bc)(9 - bc) \geq 0.
\]

Indeed,

\[(9 - 4bc)(9 - bc) = (b - c)^2(b^2 + c^2 + bc) \geq 0.
\] \(\square\)

P 1.136. If \(a, b, c \) are nonnegative real numbers such that \(a + b + c = 3 \), then

\[
\frac{bc}{a^2 + a + 6} + \frac{ca}{b^2 + b + 6} + \frac{ab}{c^2 + c + 6} \leq \frac{3}{8}.
\]

(Vasile Cîrtoaje, 2009)

Solution. Write the inequality as

\[
\sum \frac{bc}{3a^2 + ap + 2p^2} \leq \frac{1}{8},
\]

where \(p = a + b + c \). We need to prove that \(f_6(a, b, c) \geq 0 \), where

\[
f_6(a, b, c) = \prod (3a^2 + ap + 2p^2) - 8 \sum bc(3b^2 + bp + 2p^2)(3c^2 + cp + 2p^2).
\]
Clearly, $f_6(a, b, c)$ has the same highest coefficient as

$$27a^2b^2c^2 - 72\sum b^3c^3,$$

that is,

$$A = 27 - 216 < 0.$$

Thus, by P 2.76-(a) in Volume 1, it suffices to prove that $f_6(a, 1, 1) \geq 0$ and $f_6(0, b, c) \geq 0$ for all $a, b, c \geq 0$. Indeed, we have

$$f_6(a, 1, 1) = 2a(a^2 + 9a + 3)(a - 1)^2(6a + 1) \geq 0$$

and

$$f_6(0, b, c) = 2(b - c)^2(5b^2 + 5bc + 2c^2)(2b^2 + 5bc + 5c^2) \geq 0.$$

The equality holds for $a = b = c = 1$, and for $a = 0$ and $b = c = 3/2$ (or any cyclic permutation).

\[\square\]

P 1.137. If a, b, c are nonnegative real numbers such that $ab + bc + ca = 3$, then

$$\frac{1}{8a^2 - 2bc + 21} + \frac{1}{8b^2 - 2ca + 21} + \frac{1}{8c^2 - 2ab + 21} \geq \frac{1}{9}.$$

(Michael Rozenberg, 2013)

Solution. Let

$$q = ab + bc + ca.$$

Write the inequality in the homogeneous form $f_6(a, b, c) \geq 0$, where

$$f_6(a, b, c) = 3q \sum (8b^2 - 2ca + 7q)(8c^2 - 2ab + 7q) - \prod (8a^2 - 2bc + 7q).$$

Clearly, $f_6(a, b, c)$ has the same highest coefficient as $f(a, b, c)$, where

$$f(a, b, c) = -8 \prod (4a^2 - bc) = -8(63a^2b^2c^2 - 16 \sum a^3b^3 + 4abc \sum a^2);$$

that is,

$$A = -8(63 - 48 + 12) < 0.$$

By P 2.76-(a) in Volume 1, it suffices to prove that $f_6(a, 1, 1) \geq 0$ and $f_6(0, b, c) \geq 0$ for all $a, b, c \geq 0$. Indeed, we have

$$f_6(a, 1, 1) = 0$$

and

$$f_6(0, b, c) = 8b^2c^2(b - c)^2 \geq 0.$$
The equality holds when two of \(a, b, c \) are equal.

Remark. The following identity holds:

\[
\sum \frac{9}{8a^2 - 2bc + 21} - 1 = \frac{8 \prod (a - b)^2}{\prod (a^2 - 2bc + 21)}.
\]

\[\square\]

P 1.138. Let \(a, b, c \) be real numbers, no two of which are zero. Prove that

\((a) \)

\[
\frac{a^2 + bc}{b^2 + c^2} + \frac{b^2 + ca}{c^2 + a^2} + \frac{c^2 + ab}{a^2 + b^2} \geq \frac{(a + b + c)^2}{a^2 + b^2 + c^2};
\]

\((b) \)

\[
\frac{a^2 + 3bc}{b^2 + c^2} + \frac{b^2 + 3ca}{c^2 + a^2} + \frac{c^2 + 3ab}{a^2 + b^2} \geq \frac{6(ab + bc + ca)}{a^2 + b^2 + c^2}.
\]

(\textit{Vasile Cirtoaje, 2014})

Solution. (a) Using the known inequality

\[
\sum \frac{a^2}{b^2 + c^2} \geq \frac{3}{2}
\]

and the Cauchy-Schwarz inequality yields

\[
\sum \frac{a^2 + bc}{b^2 + c^2} = \sum \frac{a^2}{b^2 + c^2} + \sum \frac{bc}{b^2 + c^2} \geq \sum \frac{1}{2} \left(\frac{bc}{b^2 + c^2} \right) = \sum \frac{(b + c)^2}{2(b^2 + c^2)} \geq \frac{1}{2} \sum \frac{(b + c)^2}{2(b^2 + c^2)} = \frac{(a + b + c)^2}{a^2 + b^2 + c^2}.
\]

The equality holds for \(a = b = c \).

(b) We have

\[
\sum \frac{a^2 + 3bc}{b^2 + c^2} = \sum \frac{a^2}{b^2 + c^2} + \sum \frac{3bc}{b^2 + c^2} \geq \frac{3}{2} + \sum \frac{3bc}{b^2 + c^2}
\]

\[
= -3 + 3 \sum \left(\frac{1}{2} + \frac{bc}{b^2 + c^2} \right) = -3 + 3 \sum \frac{(b + c)^2}{2(b^2 + c^2)}
\]

\[
\geq -3 + \frac{3 \left[\sum (b + c)^2 \right]}{2 \sum (b^2 + c^2)} = -3 + \frac{3 \left(\sum a^2 \right)^2}{\sum a^2} = \frac{6(ab + bc + ca)}{a^2 + b^2 + c^2}.
\]

The equality holds for \(a = b = c \).
P 1.139. Let a, b, c be real numbers such that $ab + bc + ca \geq 0$ and no two of which are zero. Prove that

$$\frac{a(b + c)}{b^2 + c^2} + \frac{b(c + a)}{c^2 + a^2} + \frac{c(a + b)}{a^2 + b^2} \geq \frac{3}{10}$$

(Vasile Cîrtoaje, 2014)

Solution. Since the problem remains unchanged by replacing a, b, c by $-a, -b, -c$, it suffices to consider the cases $a, b, c \geq 0$ and $a < 0, b \geq 0, c \geq 0$.

Case 1: $a, b, c \geq 0$. We have

$$\sum \frac{a(b + c)}{b^2 + c^2} \geq \sum \frac{a(b + c)}{(b + c)^2} = \sum \frac{a}{b + c} \geq \frac{3}{2} > \frac{3}{10}.$$

Case 2: $a < 0, b \geq 0, c \geq 0$. Replacing a by $-a$, we need to show that

$$\frac{b(c - a)}{a^2 + c^2} + \frac{c(b - a)}{a^2 + b^2} - \frac{a(b + c)}{b^2 + c^2} \geq \frac{3}{10}$$

for any nonnegative numbers a, b, c such that

$$a \leq \frac{bc}{b + c}.$$

We show first that

$$\frac{b(c - a)}{a^2 + c^2} \geq \frac{b(c - x)}{x^2 + c^2},$$

where $x = \frac{bc}{b + c}, x \geq a$. This is equivalent to

$$b(x - a)((c - a)x + ac + c^2) \geq 0,$$

which is true because

$$(c - a)x + ac + c^2 = \frac{c^2(a + 2b + c)}{b + c} \geq 0.$$

Similarly, we can show that

$$\frac{c(b - a)}{a^2 + b^2} \geq \frac{c(b - x)}{x^2 + b^2}.$$

In addition,

$$\frac{a(b + c)}{b^2 + c^2} \leq \frac{x(b + c)}{b^2 + c^2}.$$
Therefore, it suffices to prove that
\[
\frac{b(c-x)}{x^2+c^2} + \frac{c(b-x)}{x^2+b^2} = \frac{x(b+c)}{b^2+c^2} \geq \frac{3}{10}.
\]
Denote
\[
p = \frac{b}{b+c}, \quad q = \frac{c}{b+c}, \quad p + q = 1.
\]
Since
\[
\frac{b(c-x)}{x^2+c^2} = \frac{p}{1+p^2}, \quad \frac{c(b-x)}{x^2+b^2} = \frac{q}{1+q^2}
\]
and
\[
\frac{x(b+c)}{b^2+c^2} = \frac{bc}{b^2+c^2} = \frac{pq}{1-2pq},
\]
we need to show that
\[
\frac{p}{1+p^2} + \frac{q}{1+q^2} - \frac{pq}{1-2pq} \geq \frac{3}{10}.
\]
Since
\[
\frac{p}{1+p^2} + \frac{q}{1+q^2} = \frac{1+pq}{2-2pq+p^2q^2},
\]
the inequality can be written as
\[
(pq+2)(1-4pq) \geq 0,
\]
which is true since
\[
1-4pq = (p+q)^2 - 4pq = (p-q)^2 \geq 0.
\]
The equality holds for $-2a = b = c$ (or any cyclic permutation).

\[\square\]

P 1.140. If a, b, c are positive real numbers such that $abc > 1$, then
\[
\frac{1}{a+b+c-3} + \frac{1}{abc-1} \geq \frac{4}{ab+bc+ca-3}.
\]
(\textit{Vasile Cîrtoaje, 2011})

Solution (by Vo Quoc Ba Can). By the AM-GM inequality, we have
\[
a + b + c \geq 3\sqrt[3]{abc} > 3,
\]
\[
ab + bc + ca \geq 3\sqrt[3]{a^2b^2c^2} > 3.
\]
Without loss of generality, assume that $a = \min\{a, b, c\}$. By the Cauchy-Schwarz inequality, we have

$$\left(\frac{1}{a + b + c - 3} + \frac{1}{abc - 1}\right)\left[a(a + b + c - 3) + \frac{abc - 1}{a}\right] \geq \left(\sqrt{a} + \frac{1}{\sqrt{a}}\right)^2.$$

Therefore, it suffices to prove that

$$\frac{(a + 1)^2}{4a} \geq \frac{a(a + b + c - 3) + \frac{abc - 1}{a}}{ab + bc + ca - 3}.$$

Since

$$a(a + b + c - 3) + \frac{abc - 1}{a} = ab + bc + ca - 3 + \frac{(a - 1)^3}{a},$$

this inequality can be written as follows

$$\frac{(a + 1)^2}{4a} - 1 \geq \frac{(a - 1)^3}{a(ab + bc + ca - 3)},$$

$$\frac{(a - 1)^2}{4a} \geq \frac{(a - 1)^3}{a(ab + bc + ca - 3)},$$

$$(a - 1)^2(ab + bc + ca + 1 - 4a) \geq 0.$$

This is true since

$$bc \geq \sqrt[3]{(abc)^2} > 1,$$

and hence

$$ab + bc + ca + 1 - 4a > a^2 + 1 + a^2 + 1 - 4a = 2(a - 1)^2 \geq 0.$$

The equality holds for $a > 1$ and $b = c = 1$ (or any cyclic permutation).

Remark. Using this inequality, we can prove P 2.84 in Volume 1, which states that

$$(a + b + c - 3)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 3\right) + abc + \frac{1}{abc} \geq 2$$

for any positive real numbers a, b, c. This inequality is clearly true for $abc = 1$. In addition, it remains unchanged by substituting a, b, c with $1/a, 1/b, 1/c$, respectively. Therefore, it suffices to consider the case $abc > 1$. Since $a + b + c \geq 3\sqrt[3]{abc} > 3$, we can write the required inequality as $E \geq 0$, where

$$E = ab + bc + ca - 3abc + \frac{(abc - 1)^2}{a + b + c - 3}.$$
According to the inequality in P 1.140, we have
\[
E \geq ab + bc + ca - 3abc + (abc - 1)^2 \left(\frac{4}{ab + bc + ca - 3} - \frac{1}{abc - 1} \right)
\]
\[
= (ab + bc + ca - 3) + \frac{4(abc - 1)^2}{ab + bc + ca - 3} - 4(abc - 1)
\]
\[
\geq 2\sqrt{(ab + bc + ca - 3) \cdot \frac{4(abc - 1)^2}{ab + bc + ca - 3} - 4(abc - 1)} = 0.
\]
\[
\square
\]

P 1.141. Let \(a, b, c\) be positive real numbers, no two of which are zero. Prove that
\[
\sum \frac{(4b^2 - ac)(4c^2 - ab)}{b + c} \leq \frac{27}{2} abc.
\]

(Vasile Cîrtoaje, 2011)

Solution. Since
\[
\sum \frac{(4b^2 - ac)(4c^2 - ab)}{b + c} = \sum \frac{bc(16bc + a^2)}{b + c} - 4 \sum \frac{a(b^3 + c^3)}{b + c}
\]
\[
= \sum \frac{bc(16bc + a^2)}{b + c} - 4 \sum \frac{a(b^2 + c^2)}{b + c} + 12abc
\]
\[
= \sum bc \left[\frac{a^2}{b + c} + \frac{16bc}{b + c} - 4(b + c) \right] + 12abc
\]
\[
= \sum bc \left[\frac{a^2}{b + c} - 4\frac{(b - c)^2}{b + c} \right] + 12abc
\]
we can write the inequality as follows
\[
\sum bc \left[\frac{a}{2} - \frac{a^2}{b + c} + \frac{4(b - c)^2}{b + c} \right] \geq 0,
\]
\[
8 \sum \frac{bc(b - c)^2}{b + c} \geq abc \sum \frac{2a - b - c}{b + c}.
\]

In addition, since
\[
\sum \frac{2a - b - c}{b + c} = \sum \frac{(a - b) + (a - c)}{b + c} = \sum \frac{a - b}{b + c} + \sum \frac{b - a}{c + a}
\]
\[
= \sum \frac{(a - b)^2}{(b + c)(c + a)} = \sum \frac{(b - c)^2}{(c + a)(a + b)},
\]
the inequality can be restated as
\[
8 \sum \frac{bc(b-c)^2}{b+c} \geq abc \sum \frac{(b-c)^2}{(c+a)(a+b)},
\]
\[
\sum \frac{bc(b-c)^2(8a^2 + 8bc + 7ab + 7ac)}{(a+b)(b+c)(c+a)} \geq 0.
\]
Since the last form is obvious, the proof is completed. The equality holds for \(a = b = c\), and also for \(a = 0\) and \(b = c\) (or any cyclic permutation).

\[\square\]

P 1.142. Let \(a, b, c\) be nonnegative real numbers, no two of which are zero, such that
\[a + b + c = 3.\]
Prove that
\[\frac{a}{3a + bc} + \frac{b}{3b + ca} + \frac{c}{3c + ab} \geq \frac{2}{3}.\]

Solution. Since
\[3a + bc = a(a + b + c) + bc = (a + b)(a + c),\]
we can write the inequality as follows
\[a(b + c) + b(c + a) + c(a + b) \geq \frac{2}{3}(a + b)(b + c)(c + a),\]
\[6(ab + bc + ca) \geq 2[(a + b + c)(ab + bc + ca) - abc],\]
\[2abc \geq 0.\]
The equality holds for \(a = 0\), or \(b = 0\), or \(c = 0\).

\[\square\]

P 1.143. Let \(a, b, c\) be positive real numbers such that
\[(a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = 10.\]
Prove that
\[\frac{19}{12} \leq \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \leq \frac{5}{3}.\]

\(\text{(Vasile Cîrtoaje, 2012)}\)
First Solution. Write the hypothesis

\[(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = 10\]

as

\[\frac{b + c}{a} + \frac{c + a}{b} + \frac{a + b}{c} = 7\]

and

\[(a + b)(b + c)(c + a) = 9abc.\]

Using the substitutions \(x = \frac{b + c}{a}, \ y = \frac{c + a}{b}\) and \(z = \frac{a + b}{c}\), we need to show that \(x + y + z = 7\) and \(xyz = 9\) involve

\[\frac{19}{12} \leq \frac{1}{x} \leq \frac{5}{3}\]

or, equivalently,

\[\frac{19}{12} \leq \frac{1}{x} + \frac{x(7-x)}{9} \leq \frac{5}{3}\]

Clearly, \(x, y, z \in (0, 7)\). The left inequality is equivalent to

\[(x - 4)(2x - 3)^2 \leq 0,\]

while the right inequality is equivalent to

\[(x - 1)(x - 3)^2 \geq 0.\]

These inequalities are true if \(1 \leq x \leq 4\). To show that \(1 \leq x \leq 4\), from \((y + z)^2 \geq 4yz\), we get

\[(7 - x)^2 \geq \frac{36}{x},\]

\[(x - 1)(x - 4)(x - 9) \geq 0,\]

\[1 \leq x \leq 4.\]

Thus, the proof is completed. The left inequality is an equality for \(2a = b = c\) (or any cyclic permutation), and the right inequality is an equality for \(a/2 = b = c\) (or any cyclic permutation).

Second Solution. Due to homogeneity, assume that \(b + c = 2\); this involves \(bc \leq 1\). From the hypothesis

\[(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = 10,\]

we get

\[bc = \frac{2a(a + 2)}{9a - 2}.\]
Since
\[\frac{bc - 1}{9a - 2} = \frac{(a - 2)(2a - 1)}{9a - 2}, \]
from the condition \(bc \leq 1 \), we get
\[\frac{1}{2} \leq a \leq 2. \]

We have
\[\frac{b}{c + a} + \frac{c}{a + b} = \frac{a(b + c) + b^2 + c^2}{a^2 + (b + c)a + bc} = \frac{2a + 4 - 2bc}{a^2 + 2a + bc} = \frac{2(7a^2 + 12a - 4)}{9a^2(a + 2)} = \frac{2(7a - 2)}{9a^2}, \]
and hence
\[\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} = \frac{a}{2} + \frac{2(7a - 2)}{9a^2} = \frac{9a^3 + 28a - 8}{18a^2}. \]
Thus, we need to show that
\[\frac{19}{12} \leq \frac{9a^3 + 28a - 8}{18a^2} \leq \frac{5}{3}. \]
These inequalities are true, since the left inequality is equivalent to
\[(2a - 1)(3a - 4)^2 \geq 0, \]
and the right inequality is equivalent to
\[(a - 2)(3a - 2)^2 \leq 0. \]

Remark. Similarly, we can prove the following generalization.

- Let \(a, b, c \) be positive real numbers such that
 \[(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = 9 + \frac{8k^2}{1 - k^2}, \]
where \(k \in (0, 1) \). Then,
 \[\frac{k^2}{1 + k} \leq \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \leq \frac{3}{2} \leq \frac{k^2}{1 - k}. \]
\[\Box \]
P 1.144. Let a, b, c be nonnegative real numbers, no two of which are zero, such that $a + b + c = 3$. Prove that

$$\frac{9}{10} < \frac{a}{2a + bc} + \frac{b}{2b + ca} + \frac{c}{2c + ab} \leq 1.$$

(Vasile Cîrtoaje, 2012)

Solution. (a) Since

$$\frac{a}{2a + bc} - \frac{1}{2} = \frac{-bc}{2(2a + bc)},$$

we can write the right inequality as

$$\sum \frac{bc}{2a + bc} \geq 1.$$

According to the Cauchy-Schwarz inequality, we have

$$\sum \frac{bc}{2a + bc} \geq \frac{(\sum bc)^2}{\sum bc(2a + bc)} = \frac{\sum b^2c^2 + 2abc \sum a}{6abc + \sum b^2c^2} = 1.$$

The equality holds for $a = b = c = 1$, and also for $a = 0$, or $b = 0$, or $c = 0$.

(b) First Solution. For the nontrivial case $a, b, c > 0$, we can write the left inequality as

$$\sum \frac{1}{2 + \frac{bc}{a}} > \frac{9}{10}.$$

Using the substitutions

$$x = \sqrt{\frac{bc}{a}}, \quad y = \sqrt{\frac{ca}{b}}, \quad z = \sqrt{\frac{ab}{c}},$$

we need to show that

$$\sum \frac{1}{2 + x^2} > \frac{9}{10}$$

for all positive real numbers x, y, z satisfying $xy + yz + zx = 3$. By expanding, the inequality becomes

$$4 \sum x^2 + 48 \geq 9x^2y^2z^2 + 8 \sum x^2y^2.$$

Since

$$\sum x^2y^2 = (\sum xy)^2 - 2xyz \sum x = 9 - 2xyz \sum x,$$

we can write the desired inequality as

$$4 \sum x^2 + 16xyz \sum x \geq 9x^2y^2z^2 + 24,$$
which is equivalent to
\[16xyz(x + y + z) \geq 9x^2y^2z^2 + 4(2xy + 2yz + 2zx - x^2 - y^2 - z^2). \]

Using Schur’s inequality
\[\frac{9xyz}{x + y + z} \geq 2xy + 2yz + 2zx - x^2 - y^2 - z^2, \]
it suffices to prove that
\[16xyz(x + y + z) \geq 9x^2y^2z^2 + \frac{36xyz}{x + y + z}. \]

This is true if
\[16(x + y + z) \geq 9xyz + \frac{36}{x + y + z}. \]

Since
\[x + y + z \geq \sqrt{3(xy + yz + zx)} = 3 \]
and
\[1 = \frac{xy + yz + zx}{3} \geq \sqrt[3]{xyz}, \]
we have
\[16(x + y + z) - 9xyz - \frac{36}{x + y + z} \geq 48 - 9xyz - 12 = 9(4 - xyz) > 0. \]

Second Solution. As it is shown at the first solution, it suffices to show that
\[\sum \frac{1}{2 + x^2} > \frac{9}{10} \]
for all positive real numbers \(x, y, z \) satisfying \(xy + yz + zx = 3 \). Rewrite this inequality as
\[\sum \frac{x^2}{2 + x^2} < \frac{6}{5}. \]

Let \(p \) and \(q \) be two positive real numbers such that \(p + q = \sqrt{3} \).

By the Cauchy-Schwarz inequality, we have
\[\frac{x^2}{2 + x^2} = \frac{3x^2}{2(xy + yz + zx) + 3x^2} \leq \frac{(px + qx)^2}{2p^2x + p^2x + q^2x^2 + q^2x^2 + x^2 + 2yz}. \]
Therefore,
\[\sum \frac{x^2}{2 + x^2} \leq \sum \frac{p^2 x}{2(x + y + z)} + \sum \frac{q^2 x^2}{x^2 + 2yz} = \frac{p^2}{2} + q^2 \sum \frac{x^2}{x^2 + 2yz}. \]

Thus, it suffices to prove that
\[\frac{p^2}{2} + q^2 \sum \frac{x^2}{x^2 + 2yz} < \frac{6}{5}. \]

We claim that
\[\sum \frac{x^2}{x^2 + 2yz} < 2. \]

Under this assumption, we only need to show that
\[\frac{p^2}{2} + 2q^2 \leq \frac{6}{5}. \]

Indeed, choosing \(p = \frac{4\sqrt{3}}{5} \) and \(q = \frac{\sqrt{3}}{5} \), we have \(p + q = \sqrt{3} \) and \(\frac{p^2}{2} + 2q^2 = \frac{6}{5} \). To complete the proof, we need to prove the homogeneous inequality \(\sum \frac{x^2}{x^2 + 2yz} < 2 \), which is equivalent to
\[\sum \frac{yz}{x^2 + 2yz} > \frac{1}{2}. \]

By the Cauchy-Schwarz inequality, we get
\[\sum \frac{yz}{x^2 + 2yz} \geq \left(\sum \frac{yz}{x^2 + 2yz} \right) \left(\sum \frac{yz}{x^2 + 2yz} \right) = \sum \frac{y^2 z^2}{xyz} + 2xyz \sum \frac{x}{x^2 + 2yz} > \frac{1}{2}. \]

\[\square \]

P 1.145. Let \(a, b, c \) be nonnegative real numbers, no two of which are zero. Prove that
\[\frac{a^3}{2a^2 + bc} + \frac{b^3}{2b^2 + ca} + \frac{c^3}{2c^2 + ab} \leq \frac{a^3 + b^3 + c^3}{a^2 + b^2 + c^2}. \]

(Vasile Cîrtoaje, 2011)

Solution. Write the inequality as follows
\[\sum \left[\frac{a^3}{a^2 + b^2 + c^2} - \frac{a^3}{2a^2 + bc} \right] \geq 0, \]
\[\sum \frac{a^3(a^2 + bc - b^2 - c^2)}{2a^2 + bc} \geq 0, \]
\[\sum \frac{a^3[a^2(b + c) - b^3 - c^3]}{(b + c)(2a^2 + bc)} \geq 0, \]
\[\sum \frac{a^3b(a^2 - b^2) + a^3c(a^2 - c^2)}{(b + c)(2a^2 + bc)} \geq 0, \]
\[\sum \frac{a^3b(a^2 - b^2)}{(b + c)(2a^2 + bc)} + \sum \frac{a^3c(a^2 - c^2)}{(b + c)(2a^2 + bc)} \geq 0, \]
\[\sum \frac{a^3b(a^2 - b^2)}{(b + c)(2a^2 + bc)} + \sum \frac{b^3(a^2 - a^2)}{(c + a)(2b^2 + ca)} \geq 0, \]
\[\sum \frac{ab(a + b)(a - b)^2[2a^2b^2 + c(a^3 + a^2b + ab^2 + b^3) + c^2(a^2 + ab + b^2)]}{(b + c)(c + a)(2a^2 + bc)(2b^2 + ca)} \geq 0. \]

The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

\[\square \]

P 1.146. Let \(a, b, c \) be positive real numbers, no two of which are zero. Prove that

\[\frac{a^3}{4a^2 + bc} + \frac{b^3}{4b^2 + ca} + \frac{c^3}{4c^2 + ab} \geq \frac{a + b + c}{5}. \]

(Vasile Cîrtoaje, 2011)

Solution. Assume that \(a \geq b \geq c \), and write the inequality as follows

\[\sum \left(\frac{a^3}{4a^2 + bc} - \frac{a}{5} \right) \geq 0, \]
\[\sum \frac{a(a^2 - bc)}{4a^2 + bc} \geq 0, \]
\[\sum \frac{a[(a - b)(a + c) + (a - c)(a + b)]}{4a^2 + bc} \geq 0, \]
\[\sum \frac{a(a - b)(a + c)}{4a^2 + bc} + \sum \frac{a(a - c)(a + b)}{4a^2 + bc} \geq 0, \]
\[\sum \frac{a(a - b)(a + c)}{4a^2 + bc} + \sum \frac{b(b - a)(b + c)}{4b^2 + ca} \geq 0, \]
\[\sum \frac{c(a - b)^2[(a - b)^2 + bc + ca - ab]}{(4a^2 + bc)(4b^2 + ca)} \geq 0. \]
Clearly, it suffices to show that
\[
\sum \frac{c(a-b)^2(bc+ca-ab)}{(4a^2+bc)(4b^2+ca)} \geq 0,
\]
we can be written as
\[
\sum (a-b)^2(bc+ca-ab)(4c^3+abc) \geq 0.
\]
Since \(ca+ab-bc>0\), it is enough to prove that
\[
(c-a)^2(ab+bc-ca)(4b^3+abc) + (a-b)^2(bc+ca-ab)(4c^3+abc) \geq 0.
\]
In addition, since \((c-a)^2 \geq (a-b)^2\), \(4b^3+abc \geq 4c^3+abc\) and \(ab+bc-ca>0\), we only need to show that
\[
(a-b)^2(ab+bc-ca)(4c^3+abc) + (a-b)^2(bc+ca-ab)(4c^3+abc) \geq 0.
\]
This is equivalent to the obvious inequality
\[
abc(a-b)^2(4c^3+bc) \geq 0.
\]
The equality holds for \(a=b=c\).

\[\square\]

P 1.147. If \(a, b, c\) are positive real numbers, then
\[
\frac{1}{(2+a)^2} + \frac{1}{(2+b)^2} + \frac{1}{(2+c)^2} \geq \frac{3}{6+ab+bc+ca}.
\]
(Vasile Cîrtoaje, 2013)

Solution. By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{1}{(2+a)^2} \geq \frac{4(a+b+c)^2}{\sum (2+a)^2(2+b)^2}.
\]
Thus, it suffices to show that
\[
4(a+b+c)^2(6+ab+bc+ca) \geq \sum (2+a)^2(2+b)^2.
\]
This inequality is equivalent to
\[
2p^2q - 3q^2 + 3pr + 12q \geq 6(pq + 3r),
\]
where
\[p = a + b + c, \quad q = ab + bc + ca, \quad r = abc. \]

According to AM-GM inequality,
\[2p^2q - 3q^2 + 3pr + 12q \geq 2\sqrt{12q(2p^2q - 3q^2 + 3pr)}. \]

Therefore, it is enough to prove the homogeneous inequality
\[4q(2p^2q - 3q^2 + 3pr) \geq 3(pq + 3r)^2, \]
which can be written as
\[5p^2q^2 \geq 12q^3 + 6pqr + 27r^2. \]

Since \(pq \geq 9r \), we have
\[3(5p^2q^2 - 12q^3 - 6pqr - 27r^2) \geq 15p^2q^2 - 36q^3 - 2p^2q^2 - p^2q^2 = 12q^2(p^2 - 3q) \geq 0. \]

The equality holds for \(a = b = c = 1 \). \(\square \)

P 1.148. If \(a, b, c \) are positive real numbers, then
\[
\frac{1}{1+3a} + \frac{1}{1+3b} + \frac{1}{1+3c} \geq \frac{3}{3 + abc}.
\]

(Vasile Cîrtoaje, 2013)

Solution. Set
\[p = a + b + c, \quad q = ab + bc + ca, \quad r = \sqrt[3]{abc}, \]
and write the inequality as follows
\[
(3 + r^3) \sum (1 + 3b)(1 + 3c) \geq 3(1 + 3a)(1 + 3b)(1 + 3c),
\]
\[
(3 + r^3)(3 + 6p + 9q) \geq 3(1 + 3p + 9q + 27r^3),
\]
\[
r^3(2p + 3q) + 2 + 3p \geq 26r^3.
\]

By virtue of the AM-GM inequality, we have
\[p \geq 3r, \quad q \geq 3r^2. \]

Therefore, it suffices to show that
\[r^3(6r + 9r^2) + 2 + 9r \geq 26r^3, \]
which is equivalent to the obvious inequality

$$(r-1)^2(9r^3+24r^2+13r+2) \geq 0.$$

The equality holds for $a = b = c = 1$.

\(\square\)

P 1.149. Let a, b, c be real numbers, no two of which are zero. If $1 \leq k \leq 3$, then

$$
\left(k + \frac{2ab}{a^2 + b^2} \right) \left(k + \frac{2bc}{b^2 + c^2} \right) \left(k + \frac{2ca}{c^2 + a^2} \right) \geq (k-1)(k^2-1).
$$

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2011)

Solution. If a, b, c are the same sign, then the inequality is obvious since

$$
\left(k - \frac{2ab}{a^2 + b^2} \right) \left(k - \frac{2bc}{b^2 + c^2} \right) \left(k - \frac{2ca}{c^2 + a^2} \right) \geq (k-1)(k^2-1).
$$

Since the inequality remains unchanged by replacing a, b, c with $-a, -b, -c$, it suffices to consider further that $a \leq 0$, $b \geq 0$, $c \geq 0$. Setting $-a$ for a, we need to show that

$$
\left(k - \frac{2ab}{a^2 + b^2} \right) \left(k + \frac{2bc}{b^2 + c^2} \right) \left(k - \frac{2ca}{c^2 + a^2} \right) \geq (k-1)(k^2-1)
$$

for $a, b, c \geq 0$. Since

$$
\left(k - \frac{2ab}{a^2 + b^2} \right) \left(k - \frac{2ca}{c^2 + a^2} \right) = \left[k - 1 + \frac{(a-b)^2}{a^2 + b^2} \right] \left[k - 1 + \frac{(a-c)^2}{c^2 + a^2} \right]
$$

$$
\geq (k-1)^2 + (k-1) \left[\frac{(a-b)^2}{a^2 + b^2} + \frac{(a-c)^2}{c^2 + a^2} \right],
$$

it suffices to prove that

$$
\left[k - 1 + \frac{(a-b)^2}{a^2 + b^2} + \frac{(a-c)^2}{c^2 + a^2} \right] \left(k + \frac{2bc}{b^2 + c^2} \right) \geq k^2 - 1.
$$

According to the inequality (a) from P 1.19 in Volume 5, we have

$$
\frac{(a-b)^2}{a^2 + b^2} + \frac{(a-c)^2}{c^2 + a^2} \geq \frac{(b-c)^2}{(b+c)^2}.
$$

Thus, it suffices to show that

$$
\left[k - 1 + \frac{(b-c)^2}{(b+c)^2} \right] \left(k + \frac{2bc}{b^2 + c^2} \right) \geq k^2 - 1,
$$
which is equivalent to the obvious inequality

\[(b - c)^4 + 2(3 - k)bc(b - c)^2 \geq 0.\]

The equality holds for \(a = b = c\).

\[\square\]

P 1.150. If \(a, b, c\) are non-zero and distinct real numbers, then

\[
\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + 3\left[\frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2}\right] \geq 4 \left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right).
\]

Solution. Write the inequality as

\[
\left(\sum \frac{1}{a^2} - \sum \frac{1}{bc}\right) + 3 \sum \frac{1}{(b-c)^2} \geq 3 \sum \frac{1}{bc}.
\]

In virtue of the AM-GM inequality, it suffices to prove that

\[
2\sqrt{3\left(\sum \frac{1}{a^2} - \sum \frac{1}{bc}\right)\sum \frac{1}{(b-c)^2}} \geq 3 \sum \frac{1}{bc},
\]

which is true if

\[
4\left(\sum \frac{1}{a^2} - \sum \frac{1}{bc}\right)\sum \frac{1}{(b-c)^2} \geq 3\left(\sum \frac{1}{bc}\right)^2.
\]

Rewrite this inequality as

\[
4\left(\sum a^2b^2 - abc\sum a\right)(\sum a^2 - \sum ab)^2 \geq 3(a + b + c)^2(a - b)^2(b - c)^2(c - a)^2.
\]

Using the notations

\[p = a + b + c, \quad q = ab + bc + ca, \quad r = abc,
\]

and the identity

\[(a - b)^2(b - c)^2(c - a)^2 = -27r^2 - 2(2p^2 - 9q)pr + p^2q^2 - 4q^3,
\]

we can write the inequality as

\[4(q^2 - 3pr)(p^2 - 3q)^2 \geq 3p^2(-27r^2 - 2(2p^2 - 9q)pr + p^2q^2 - 4q^3),
\]

which is equivalent to

\[(9pr + p^2q - 6q^2)^2 \geq 0.
\]

\[\square\]
P 1.151. Let \(a, b, c \) be positive real numbers, and let
\[
A = \frac{a}{b} + \frac{b}{a} + k, \quad B = \frac{b}{c} + \frac{c}{b} + k, \quad C = \frac{c}{a} + \frac{a}{c} + k,
\]
where \(-2 < k \leq 4\). Prove that
\[
\frac{1}{A} + \frac{1}{B} + \frac{1}{C} \leq \frac{1}{k+2} + \frac{4}{A+B+C-(k+2)}.
\]

(Vasile Cîrtoaje, 2009)

Solution. Let us denote
\[x = \frac{a}{b}, \quad y = \frac{b}{c}, \quad z = \frac{c}{a}. \]
We need to show that
\[
\sum \frac{x}{x^2 + kx + 1} \leq \frac{1}{k+2} + \frac{4}{\sum x + \sum xy + 2k-2}
\]
for all positive real numbers \(x, y, z \) satisfying \(xyz = 1 \). Write this inequality as follows:
\[
\sum \left(\frac{1}{k+2} - \frac{x}{x^2 + kx + 1} \right) \geq \frac{2}{k+2} - \frac{4}{\sum x + \sum xy + 2k-2},
\]
\[
\sum \frac{(x-1)^2}{x^2 + kx + 1} \geq \frac{2\sum yz(x-1)^2}{\sum x + \sum xy + 2k-2},
\]
\[
\sum \frac{(x-1)^2[-x+y+z+x(y+z)-yz-2]}{x^2 + kx + 1} \geq 0.
\]
Since
\[
-(x+y+z+x(y+z)-yz-2) = (x+1)(y+z)-(x+yz+2)
\]
\[
= (x+1)(y+z) - (x+1)(yz+1) = -(x+1)(y-1)(z-1),
\]
the inequality is equivalent to
\[
-(x-1)(y-1)(z-1) \sum \frac{x^2-1}{x^2 + kx + 1} \geq 0,
\]
or \(E \geq 0 \), where
\[
E = -(x-1)(y-1)(z-1) \sum (x^2-1)(y^2+ky+1)(z^2+kz+1).
\]
We have
\[
\sum (x^2-1)(y^2+ky+1)(z^2+kz+1) = k(2-k) \left(\sum xy - \sum x \right) + \left(\sum x^2y^2 - \sum x^2 \right)
\]
Symmetric Rational Inequalities 203

\[-k(2 - k)(x - 1)(y - 1)(z - 1) - (x^2 - 1)(y^2 - 1)(z^2 - 1)\]
\[= -(x - 1)(y - 1)(z - 1)[(x + 1)(y + 1)(z + 1) + k(2 - k)],\]
and hence
\[E = (x - 1)^2(y - 1)^2(z - 1)^2[(x + 1)(y + 1)(z + 1) + k(2 - k)] \geq 0,
because
\[(x + 1)(y + 1)(z + 1) + k(2 - k) \geq (2\sqrt{x})(2\sqrt{y})(2\sqrt{z}) + k(2 - k) = (2 + k)(4 - k) \geq 0.
The equality holds for \(a = b,\) or \(b = c,\) or \(c = a.\)

\[P 1.152.\] If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} + \frac{1}{a^2 + ab + b^2} \geq \frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ca} + \frac{1}{2c^2 + ab}.
\]
(Vasile Cîrtoaje, 2014)

Solution. Write the inequality as follows:
\[
\sum \left(\frac{1}{b^2 + bc + c^2} - \frac{1}{2a^2 + bc} \right) \geq 0,
\]
\[
\sum \left(\frac{(a^2 - b^2) + (a^2 - c^2)}{(b^2 + bc + c^2)(2a^2 + bc)} \right) \geq 0,
\]
\[
\sum \frac{a^2 - b^2}{(b^2 + bc + c^2)(2a^2 + bc)} + \sum \frac{b^2 - a^2}{(2b^2 + ca)(c^2 + ca + a^2)} \geq 0,
\]
\[
(a^2 + b^2 + c^2 - ab - bc - ca) \sum \frac{c(a^2 - b^2)(a - b)}{(b^2 + bc + c^2)(c^2 + ca + a^2)(2a^2 + bc)(2b^2 + ca)} \geq 0.
\]
Clearly, the last form is obvious. The equality holds for \(a = b = c.\)

\[P 1.153.\] If \(a, b, c\) are nonnegative real numbers such that \(a + b + c = 3,\) then
\[
\frac{1}{2ab + 1} + \frac{1}{2bc + 1} + \frac{1}{2ca + 1} \geq \frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2}.
\]
(Vasile Cîrtoaje, 2014)
Solution. Write the inequality as

\[
\sum \frac{1}{2ab+1} - \frac{3}{2} \geq \sum \left(\frac{1}{a^2 + 2} - \frac{1}{2} \right),
\]

\[
\sum \frac{1}{2ab+1} + \sum \frac{a^2}{2(a^2 + 2)} \geq \frac{3}{2}.
\]

Let us denote

\[q = ab + bc + ca, \quad q \leq 3. \]

By the Cauchy-Schwarz inequality, we have

\[
\sum \frac{1}{2ab+1} \geq \frac{9}{\sum (2ab + 1)} = \frac{9}{2q + 3}
\]

and

\[
\sum \frac{a^2}{2(a^2 + 2)} \geq \frac{(\sum a)^2}{\sum 2(a^2 + 2)} = \frac{9}{2(15 - 2q)}.
\]

Therefore, it suffices to prove that

\[
\frac{9}{2q + 3} + \frac{9}{2(15 - 2q)} \geq \frac{3}{2}.
\]

This inequality is true because it reduces to the obvious inequality

\[(3 - q)(9 - 2q) \geq 0.\]

The equality holds for \(a = b = c = 1\).

\[\square \]

P 1.154. If \(a, b, c\) are nonnegative real numbers such that \(a + b + c = 4\), then

\[
\frac{1}{ab + 2} + \frac{1}{bc + 2} + \frac{1}{ca + 2} \geq \frac{1}{a^2 + 2} + \frac{1}{b^2 + 2} + \frac{1}{c^2 + 2}.
\]

(Vasile Cirtoaje, 2014)

First Solution (by Nguyen Van Quy). Rewrite the inequality as follows:

\[
\sum \left(\frac{2}{ab + 2} - \frac{1}{a^2 + 2} - \frac{1}{b^2 + 2} \right) \geq 0,
\]

\[
\sum \left[\frac{a(a - b)}{(ab + 2)(a^2 + 2)} + \frac{b(b - a)}{(ab + 2)(b^2 + 2)} \right] \geq 0,
\]
\[\sum \frac{(2 - ab)(a - b)^2(c^2 + 2)}{ab + 2} \geq 0. \]

Without loss of generality, assume that \(a \geq b \geq c \geq 0 \). Then,

\[bc \leq ac \leq \frac{a(b + c)}{2} \leq \frac{(a + b + c)^2}{8} = 2 \]

and

\[\sum \frac{(2 - ab)(a - b)^2(c^2 + 2)}{ab + 2} \geq \frac{(2 - ab)(a - b)^2(c^2 + 2)}{ab + 2} + \frac{(2 - ac)(a - c)(b^2 + 2)}{ac + 2} \]
\[\geq \frac{(2 - ab)(a - b)^2(c^2 + 2)}{ab + 2} + \frac{(2 - ac)(a - b)(c^2 + 2)}{ab + 2} \]
\[= \frac{(4 - ab - ac)(a - b)^2(c^2 + 2)}{ab + 2} \geq 0. \]

The equality holds for \(a = b = c = 4/3 \), and also for \(a = 2 \) and \(b = c = 1 \) (or any cyclic permutation).

Second Solution. Write the inequality as

\[\sum \frac{1}{bc + 2} - \frac{3}{2} \geq \sum \left(\frac{1}{a^2 + 2} - \frac{1}{2} \right), \]
\[\sum \frac{1}{bc + 2} + \sum \frac{a^2}{2(a^2 + 2)} \geq \frac{3}{2}. \]

Assume that \(a \geq b \geq c \) and denote

\[s = \frac{b + c}{2}, \quad p = bc, \quad 0 \leq s \leq \frac{4}{3}, \quad 0 \leq p \leq s^2. \]

By the Cauchy-Schwarz inequality, we have

\[\frac{b^2}{2(b^2 + 2)} + \frac{c^2}{2(c^2 + 2)} \geq \frac{(b + c)^2}{2(b^2 + 2) + 2(c^2 + 2) + 4} = \frac{s^2}{2s^2 - p + 2}. \]

In addition,

\[\frac{1}{ca + 2} + \frac{1}{ab + 2} = \frac{a(b + c) + 4}{(ab + 2)(ac + 2)} = \frac{2as + 4}{a^2p + 4as + 4}. \]

Therefore, it suffices to show that \(E(a, b, c) \geq 0 \), where

\[E(a, b, c) = \frac{1}{p + 2} + \frac{2(as + 2)}{a^2p + 4as + 4} + \frac{a^2}{2(a^2 + 2)} + \frac{s^2}{2s^2 - p + 2} - \frac{3}{2}. \]

We will prove that

\[E(a, b, c) \geq E(a, s, s) \geq 0. \]
We have
\[
E(a, b, c) - E(a, s, s) = \left(\frac{1}{p+2} - \frac{1}{s^2 + 2}\right) + 2(as + 2)\left(\frac{1}{a^2p + 4as + 4} - \frac{1}{a^2s^2 + 4as + 4}\right)
\]
\[+ s^2\left(\frac{1}{2s^2 - p + 2} - \frac{1}{s^2 + 2}\right)\]
\[= \frac{s^2 - p}{(p+2)(s^2 + 2)} + \frac{2a^2(as + 2)(s^2 - p)}{(a^2p + 4as + 4)(a^2s^2 + 4as + 4)}\]
\[\quad - \frac{2a^2(2s^2 - p + 2)}{(s^2 + 2)(2s^2 - p + 2)}.\]

Since \(s^2 - p \geq 0\), it remains to show that
\[
\frac{1}{(p+2)(s^2 + 2)} + \frac{2a^2(as + 2)}{(a^2p + 4as + 4)(a^2s^2 + 4as + 4)} \geq \frac{s^2}{(s^2 + 2)(2s^2 - p + 2)},
\]
which is equivalent to
\[
\frac{2a^2(as + 2)}{(a^2p + 4as + 4)(a^2s^2 + 4as + 4)} \geq \frac{p(s^2 + 1) - 2}{(p+2)(s^2 + 2)(2s^2 - p + 2)}.
\]

Since
\[a^2p + 4as + 4 \leq a^2s^2 + 4as + 4 = (as + 2)^2\]
and
\[2s^2 - p + 2 \geq s^2 + 2,\]
it is enough to prove that
\[
\frac{2a^2}{(as + 2)^3} \geq \frac{p(s^2 + 1) - 2}{(p+2)(s^2 + 2)^2}.
\]

In addition, since
\[as + 2 = (4 - 2s)s + 2 \leq 4\]
and
\[
p(s^2 + 1) - 2 = s^2 + 1 - \frac{2(s^2 + 2)}{p + 2} \leq s^2 + 1 - \frac{2(s^2 + 2)}{s^2 + 2} = s^2 - 1,
\]
it suffices to show that
\[
\frac{a^2}{32} \geq \frac{s^2 - 1}{(s^2 + 2)^2},
\]
which is equivalent to
\[\quad (2-s)^2(2+s)^2 \geq 8(s^2 - 1).\]
Indeed, for the non-trivial case $1 < s \leq \frac{4}{3}$, we have

$$(2-s)^2(2+s)^2 - 8(s^2-1) \geq \left(2 - \frac{4}{3}\right)^2 (2+s)^2 - 8(s^2-1) = \frac{4}{9}(s^4 - 14s^2 + 22)$$

$$= \frac{4}{9}[(7-s)^2 - 27] \geq \frac{4}{9}\left[\left(\frac{7}{9}\right)^2 - 27\right] = \frac{88}{729} > 0.$$

To end the proof, we need to show that $E(a, s, s) \geq 0$. Notice that $E(a, s, s)$ can be found from $E(a, b, c)$ by replacing p with s^2. We get

$$E(a, s, s) = \frac{1}{s^2+2} + \frac{2}{as+2} + \frac{a^2}{2(a^2+2)} + \frac{s^2}{s^2+2} - \frac{3}{2}$$

$$= \frac{2(s^2+2)(1+2s-s^2)(2s^2-8s+9)}{(s-1)^2(3s-4)^2} \geq 0.$$

\square

P 1.155. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a) $$\frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{(a-b)^2(b-c)^2(c-a)^2}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)} \leq 1;$$

(b) $$\frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{(a-b)^2(b-c)^2(c-a)^2}{(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2)} \leq 1.$$

(Vasile Cîrtoaje, 2014)

Solution. (a) **First Solution.** Consider the non-trivial case where a, b, c are distinct and write the inequality as follows:

$$\frac{(a-b)^2(b-c)^2(c-a)^2}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)} \leq \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{2(a^2 + b^2 + c^2)}.$$

$$\frac{(a^2 + b^2) + (b^2 + c^2) + (c^2 + a^2)}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)} \leq \frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{(a-b)^2(b-c)^2(c-a)^2},$$

$$\sum \frac{1}{(b^2 + c^2)(c^2 + a^2)} \leq \sum \frac{1}{(b-c)^2(c-a)^2}.$$

Since

$$a^2 + b^2 \geq (a-b)^2, \quad b^2 + c^2 \geq (b-c)^2, \quad c^2 + a^2 \geq (c-a)^2,$$

the conclusion follows. The equality holds for $a = b = c$.
Second Solution. Assume that \(a \geq b \geq c \). We have

\[
\frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{(a - b)^2(b - c)^2(c - a)^2}{(a^2 + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2)} \leq \frac{ab + bc + ca}{a^2 + b^2 + c^2} + \frac{(a - b)^2(a - c)^2}{(a^2 + b^2)(a^2 + c^2)} \leq \frac{2ab + c^2}{a^2 + b^2 + c^2} + \frac{(a - b)^2a^2}{a^2(a^2 + b^2 + c^2)} = \frac{2ab + c^2 + (a - b)^2}{a^2 + b^2 + c^2} = 1.
\]

(b) Consider the non-trivial case where \(a, b, c \) are distinct and write the inequality as follows:

\[
\frac{(a - b)^2(b - c)^2(c - a)^2}{(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2)} \leq \frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{2(a^2 + b^2 + c^2)},
\]

\[
\frac{2(a^2 + b^2 + c^2)}{(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2)} \leq \frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{(a - b)^2(b - c)^2(c - a)^2},
\]

\[
\sum \frac{1}{(a - b)^2(a - c)^2} \geq \frac{2(a^2 + b^2 + c^2)}{(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2)}.
\]

Assume that \(a = \min\{a, b, c\} \) and use the substitution

\[b = a + x, \quad c = a + y, \quad x, y \geq 0. \]

The inequality can be written as

\[
\frac{1}{x^2y^2} + \frac{1}{x^2(x - y)^2} + \frac{1}{y^2(x - y)^2} \geq 2f(a),
\]

where

\[
f(a) = \frac{3a^2 + 2(x + y)a + x^2 + y^2}{(a^2 + xa + x^2)(a^2 + ya + y^2)[a^2 + (x + y)a + x^2 - xy + y^2]}.\]

We will show that

\[
\frac{1}{x^2y^2} + \frac{1}{x^2(x - y)^2} + \frac{1}{y^2(x - y)^2} \geq 2f(0) \geq 2f(a).
\]

We have

\[
\frac{1}{x^2y^2} + \frac{1}{x^2(x - y)^2} + \frac{1}{y^2(x - y)^2} - 2f(0) = \frac{2(x^2 + y^2 - xy)}{x^2y^2(x - y)^2} - \frac{2(x^2 + y^2)}{x^2y^2(x^2 - xy + y^2)} = \frac{2}{(x - y)^2(x^2 - xy + y^2)} \geq 0.
\]
Symmetric Rational Inequalities

Also, since
\[(a^2 + xa + x^2)(a^2 + ya + y^2) \geq (x^2 + y^2)a^2 + xy(x + y)a + x^2y^2\]
and
\[a^2 + (x + y)a + x^2 - xy + y^2 \geq x^2 - xy + y^2,\]
we get \(f(a) \leq g(a)\), where
\[g(a) = \frac{3a^2 + 2(x + y)a + x^2 + y^2}{[(x^2 + y^2)a^2 + xy(x + y)a + x^2y^2](x^2 - xy + y^2)}.\]

Therefore,
\[f(0) - f(a) \geq \frac{x^2 + y^2}{x^2y^2(x^2 - xy + y^2)} - g(a) = \frac{(x^4 - x^2y^2 + y^4)a^2 + xy(x + y)(x - y)^2a}{x^2y^2(x^2 - xy + y^2)[(x^2 + y^2)a^2 + xy(x + y)a + x^2y^2]} \geq 0.\]

Thus, the proof is completed. The equality holds for \(a = b = c\).

\[\Box\]

P 1.156. If \(a, b, c\) are nonnegative real numbers, no two of which are zero, then
\[
\frac{1}{a^2 + b^2} + \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} \geq \frac{45}{8(a^2 + b^2 + c^2) + 2(ab + bc + ca)}.
\]

(Vasile Cîrtoaje, 2014)

First Solution (by Nguyen Van Quy). Multiplying by \(a^2 + b^2 + c^2\), the inequality becomes
\[
\sum \frac{a^2}{b^2 + c^2} + 3 \geq \frac{45(a^2 + b^2 + c^2)}{8(a^2 + b^2 + c^2) + 2(ab + bc + ca)}.
\]

Applying the Cauchy-Schwarz inequality, we have
\[
\sum \frac{a^2}{b^2 + c^2} \geq \frac{(\sum a^2)^2}{\sum a^2(b^2 + c^2)} = \frac{(a^2 + b^2 + c^2)^2}{2(a^2b^2 + b^2c^2 + c^2a^2)}.
\]

Therefore, it suffices to show that
\[
\frac{(a^2 + b^2 + c^2)^2}{2(a^2b^2 + b^2c^2 + c^2a^2)} + 3 \geq \frac{45(a^2 + b^2 + c^2)}{8(a^2 + b^2 + c^2) + 2(ab + bc + ca)},
\]
which is equivalent to
\[
\frac{(a^2 + b^2 + c^2)^2}{a^2b^2 + b^2c^2 + c^2a^2} - 3 \geq \frac{45(a^2 + b^2 + c^2)}{4(a^2 + b^2 + c^2) + ab + bc + ca} - 9,
\]
\[
\frac{a^4 + b^4 + c^4 - a^2b^2 - b^2c^2 - c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2} \geq \frac{9(a^2 + b^2 + c^2 - ab - bc - ca)}{4(a^2 + b^2 + c^2) + ab + bc + ca}.
\]

By Schur's inequality of degree four, we have
\[
a^4 + b^4 + c^4 - a^2b^2 - b^2c^2 - c^2a^2 \geq (a^2 + b^2 + c^2 - ab - bc - ca)(ab + bc + ca) \geq 0.
\]

Therefore, it suffices to show that
\[
[4(a^2 + b^2 + c^2) + ab + bc + ca](ab + bc + ca) \geq 9(a^2b^2 + b^2c^2 + c^2a^2).
\]

Since
\[
(ab + bc + ca)^2 \geq a^2b^2 + b^2c^2 + c^2a^2,
\]
this inequality is true if
\[
4(a^2 + b^2 + c^2)(ab + bc + ca) \geq 8(a^2b^2 + b^2c^2 + c^2a^2),
\]
which is equivalent to the obvious inequality
\[
ab(a - b)^2 + bc(b - c)^2 + ca(c - a)^2 + abc(a + b + c) \geq 0.
\]
The equality holds for \(a = b = c\), and also for \(a = 0\) and \(b = c\) (or any cyclic permutation).

Second Solution. Write the inequality as \(f_6(a, b, c) \geq 0\), where
\[
f_6(a, b, c) = [8(a^2 + b^2 + c^2) + 2(ab + bc + ca)]\sum(a^2 + b^2)(a^2 + c^2) - 45 \prod(b^2 + c^2).
\]

Clearly, \(f_6(a, b, c)\) has the same highest coefficient \(A\) as
\[
f(a, b, c) = -45 \prod(b^2 + c^2) = -45 \prod(p^2 - 2q - a^2),
\]
where \(p = a + b + c\) and \(q = ab + bc + ca\); that is,
\[
A = 45.
\]
Since \(A > 0\), we will apply the highest coefficient cancellation method. We have
\[
f_6(a, 1, 1) = 4a(2a + 5)(a^2 + 1)(a - 1)^2,
\]
\[
f_6(0, b, c) = (b - c)^2[8(b^4 + c^4) + 18bc(b^2 + c^2) + 15b^2c^2].
\]
Since
\[f_6(1, 1, 1) = f_6(0, 1, 1) = 0, \]
define the homogeneous function
\[P(a, b, c) = abc + B(a + b + c)^3 + C(a + b + c)(ab + bc + ca) \]
such that \(P(1, 1, 1) = P(0, 1, 1) = 0; \) that is,
\[P(a, b, c) = abc + \frac{1}{9}(a + b + c)^3 - \frac{4}{9}(a + b + c)(ab + bc + ca). \]
We will show that the following sharper inequality holds
\[f_6(a, b, c) \geq 45P^2(a, b, c). \]
Let us denote
\[g_6(a, b, c) = f_6(a, b, c) - 45P^2(a, b, c). \]
Clearly, \(g_6(a, b, c) \) has the highest coefficient \(A = 0. \) By P 2.76-(a) in Volume 1, it suffices to prove that \(g_6(a, 1, 1) \geq 0 \) and \(g_6(0, b, c) \geq 0 \) for all \(a, b, c \geq 0. \) We have
\[P(a, 1, 1) = \frac{a(a - 1)^2}{9}, \]
\[g_6(a, 1, 1) = f_6(a, 1, 1) - 45P^2(a, 1, 1) = \frac{a(a - 1)^2(67a^3 + 190a^2 + 67a + 180)}{9} \geq 0. \]
Also, we have
\[P(0, b, c) = \frac{(b + c)(b - c)^2}{9}, \]
\[g_6(0, b, c) = f_6(0, b, c) - 45P^2(0, b, c) \]
\[= \frac{(b - c)^2[67(b^4 + c^4) + 162bc(b^2 + c^2) + 145b^2c^2]}{9} \geq 0. \]
\[\square \]

P 1.157. If \(a, b, c \) are real numbers, no two of which are zero, then
\[\frac{a^2 - 7bc}{b^2 + c^2} + \frac{b^2 - 7ca}{a^2 + b^2} + \frac{c^2 - 7ab}{a^2 + b^2} + \frac{9(ab + bc + ca)}{a^2 + b^2 + c^2} \geq 0. \]

(Vasile Cîrtoaje, 2014)
Solution. Let

\[p = a + b + c, \quad q = ab + bc + ca, \quad r = abc. \]

Write the inequality as \(f_8(a, b, c) \geq 0 \), where

\[
f_8(a, b, c) = (a^2 + b^2 + c^2) \sum (a^2 - 7bc)(a^2 + b^2)(a^2 + c^2)
+ 9(ab + bc + ca) \prod (b^2 + c^2)
\]

is a symmetric homogeneous polynomial of degree eight. Always, \(f_8(a, b, c) \) can be written in the form

\[
f_8(a, b, c) = A(p, q)r^2 + B(p, q)r + C(p, q),
\]

where the highest polynomial \(A(p, q) \) has the form \(\alpha p^2 + \beta q \). Since

\[
f_8(a, b, c) = (p^2 - 2q) \sum (a^2 - 7bc)(p^2 - 2q - c^2)(p^2 - 2q - b^2)
+ 9q \prod (p^2 - 2q - a^2),
\]

\(f_8(a, b, c) \) has the same highest polynomial as

\[
g_8(a, b, c) = (p^2 - 2q) \sum (a^2 - 7bc)b^2c^2 + 9q(-a^2b^2c^2)
= (p^2 - 2q)(3r^2 - 7 \sum b^3c^3) - 9qr^2;
\]

that is,

\[
A(p, q) = (p^2 - 2q)(3r^2 - 3) - 9q = -9(p^2 - 3q).
\]

Since \(A(p, q) \leq 0 \) for all real \(a, b, c \), by Lemma below, it suffices to prove that \(f_8(a, 1, 1) \geq 0 \) for all \(a, b, c \geq 0 \). We have

\[
f_8(a, 1, 1) = (a^2 + 1)(a - 1)^2(a + 2)^2(a^2 - 2a + 3) \geq 0.
\]

The equality holds for \(a = b = c \), and also for \(-a/2 = b = c \) (or any cyclic permutation).

Lemma. Let

\[p = a + b + c, \quad q = ab + bc + ca, \quad r = abc, \]

and let \(f_8(a, b, c) \) be a symmetric homogeneous polynomial of degree eight written in the form

\[
f_8(a, b, c) = A(p, q)r^2 + B(p, q)r + C(p, q),
\]

where \(A(p, q) \leq 0 \) for all real \(a, b, c \). The inequality \(f_8(a, b, c) \geq 0 \) holds for all real numbers \(a, b, c \) if and only if \(f_8(a, 1, 1) \geq 0 \) for all real \(a \).

Proof. For fixed \(p \) and \(q \),

\[
h_8(r) = A(p, q)r^2 + B(p, q)r + C(p, q)
\]

is the highest polynomial of \(f_8(a, b, c) \), so that

\[
h_8(r) = \alpha r^2 + \beta r + \gamma
\]

is the highest polynomial of \(f_8(a, b, c) \) and it is non-negative (for real \(r \) and \(\alpha \geq 0, \beta \geq 0, \gamma \leq 0 \)).
Symmetric Rational Inequalities

is a concave quadratic function of \(r \). Therefore, \(h_8(r) \) is minimal when \(r \) is minimal or maximal; this is, according to P 1.53 in Volume 1, when \(f_8(a, 1, 1) \geq 0 \) and \(f_8(a, 0, 0) \geq 0 \) for all real \(a \). Notice that the condition "\(f_8(a, 0, 0) \geq 0 \) for all real \(a \)" is not necessary because it follows from the condition "\(f_8(a, 1, 1) \geq 0 \) for all real \(a \)" as follows:

\[
f_8(a, 0, 0) = \lim_{t \to 0} f_8(a, t, t) = \lim_{t \to 0} t^8 f_8(a/t, 1, 1) \geq 0.
\]

Notice that \(A(p, q) \) is called the highest polynomial of \(f_8(a, b, c) \).

Remark. This Lemma can be extended as follow.

- The inequality \(f_8(a, b, c) \geq 0 \) holds for all real numbers \(a, b, c \) satisfying \(A(p, q) \leq 0 \) if and only if \(f_8(a, 1, 1) \geq 0 \) for all real \(a \) such that \(A(a + 2, 2a + 1) \leq 0 \).

\[\square \]

P 1.158. If \(a, b, c \) are real numbers such that \(abc \neq 0 \), then

\[
\frac{(b + c)^2}{a^2} + \frac{(c + a)^2}{b^2} + \frac{(a + b)^2}{c^2} \geq 2 + \frac{10(a + b + c)^2}{3(a^2 + b^2 + c^2)}.
\]

(Vasile Cîrtoaje and Michael Rozenberg, 2014)

Solution. Let

\[
p = a + b + c, \quad q = ab + bc + ca, \quad r = abc.
\]

Write the inequality as \(f_8(a, b, c) \geq 0 \), where

\[
f_8(a, b, c) = 3(a^2 + b^2 + c^2) \left[\sum b^2 c^2 (b + c)^2 - 2a^2 b^2 c^2 \right] - 10a^2 b^2 c^2 (a + b + c)^2.
\]

From

\[
\sum b^2 c^2 (b + c)^2 - 2a^2 b^2 c^2 = \sum b^2 c^2 (p - a)^2 - 2r^2 = p^2 \sum b^2 c^2 - 2pqr + r^2,
\]

it follows that \(f_8(a, b, c) \) has the same highest polynomial as

\[
3(a^2 + b^2 + c^2)r^2 - 10r^2(a + b + c)^2;
\]

that is,

\[
A(p, q) = 3(p^2 - 2q) - 10p^2 = -7p^2 - 6q.
\]

There are two cases to consider.

Case 1: \(A(p, q) \leq 0 \). According to Remark from the preceding P 1.157, it suffices to show that \(f_8(a, 1, 1) \geq 0 \) for all real \(a \) such that \(A(a + 2, 2a + 1) \leq 0 \). Indeed, we have

\[
f_8(a, 1, 1) = 3(a^2 + 2)[4 + 2a^2(a + 1)^2 - 2a^2] - 10a^2(a + 2)^2
\]

\[
= 2(3a^6 + 6a^5 + a^4 - 8a^3 - 14a^2 + 12)
\]

\[
= 2(a - 1)^2(3a^4 + 12a^3 + 22a^2 + 24a + 12)
\]

\[
= 2(a - 1)^2[3(a + 1)^4 + (2a + 3)^2] \geq 0.
\]
Case 2: \(A(p, q) > 0 \). We will show that there exist two real numbers \(B \) and \(C \) such that the following sharper inequality holds:

\[
f_\delta(a, b, c) \geq A(p, q)P^2(a, b, c),
\]

where

\[
P(a, b, c) = r + Bp^3 + Cpq.
\]

Let us denote

\[
g_\delta(a, b, c) = f_\delta(a, b, c) - A(p, q)P^2(a, b, c).
\]

We see that the highest polynomial of \(g_\delta(a, b, c) \) is zero. Thus, according to Remark from P 1.157, it suffices to prove that \(g(a) \geq 0 \) for all real \(a \), where \(g(a) = g_\delta(a, 1, 1) \). We have

\[
g(a) = f_\delta(a, 1, 1) - A(a + 2, 2a + 1)P^2(a, 1, 1),
\]

where

\[
f_\delta(a, 1, 1) = 2(3a^6 + 6a^5 + a^4 - 8a^3 - 14a^2 + 12),
\]

\[
A(a + 2, 2a + 1) = -7(a + 2)^2 - 6(2a + 1) = -7a^2 - 40a - 34,
\]

\[
P(a, 1, 1) = a + B(a + 2)^3 + C(a + 2)(2a + 1).
\]

Since

\[
g(-2) = 72 - 18(-2)^2 = 0,
\]

a necessary condition to have \(g(a) \geq 0 \) in the vicinity of \(-2\) is \(g'(-2) = 0 \). This condition involves \(C = -1 \). We can check that \(g''(-2) = 0 \) for this value of \(C \). Thus, a necessary condition to have \(g(a) \geq 0 \) in the vicinity of \(-2\) is \(g'''(-2) = 0 \) is necessary. This condition involves \(B = 2/3 \). For these values of \(B \) and \(C \), we have

\[
g(a) = f_\delta(a, 1, 1) + (7a^2 + 40a + 34)\left[a + \frac{2}{3}(a + 2)^3 - (a + 2)(2a + 1)\right]^2
\]

\[
= \frac{2}{9}(a + 2)^4(14a^4 + 52a^3 + 117a^2 + 154a + 113).
\]

Since

\[
14a^4 + 52a^3 + 117a^2 + 154a + 113 = (a^2 + 1)^2 + 13a^2(a + 2)^2 + 7(9a^2 + 22a + 16) > 0,
\]

the proof is completed. The equality holds for \(a = b = c \).

\[\square\]

P 1.159. If \(a, b, c \) are nonnegative real numbers, no two of which are zero, then

\[
\frac{a^2 - 4bc}{b^2 + c^2} + \frac{b^2 - 4ca}{a^2 + b^2} + \frac{c^2 - 4ab}{a^2 + b^2} + \frac{9(ab + bc + ca)}{a^2 + b^2 + c^2} \geq \frac{9}{2}.
\]

(Vasile Cirtoaje, 2014)
Solution. Let
\[p = a + b + c, \quad q = ab + bc + ca, \quad r = abc. \]
Write the inequality as \(f_8(a, b, c) \geq 0 \), where
\[
f_8(a, b, c) = 2(a^2 + b^2 + c^2) \sum (a^2 - 4bc)(a^2 + b^2)(a^2 + c^2) \\
+ 9(2ab + 2bc + 2ca - a^2 - b^2 - c^2) \prod (b^2 + c^2)
\]
is a symmetric homogeneous polynomial of degree eight. Always, \(f_8(a, b, c) \) can be written in the form
\[
f_8(a, b, c) = A(p, q)r^2 + B(p, q)r + C(p, q),
\]
where \(A(p, q) = \alpha p^2 + \beta q \) is called the highest polynomial of \(f_8(a, b, c) \). Since
\[
f_8(a, b, c) = 2(p^2 - 2q) \sum (a^2 - 4bc)(p^2 - 2q - c^2)(p^2 - 2q - b^2) \\
+ 9(4q - p^2) \prod (p^2 - 2q - a^2),
\]
\(f_8(a, b, c) \) has the same highest polynomial as
\[
g_8(a, b, c) = 2(p^2 - 2q) \sum (a^2 - 4bc)b^2c^2 + 9(4q - p^2)(-a^2b^2c^2) \\
= 2(p^2 - 2q)(3r^2 - 4 \sum b^3c^3) - 9(4q - p^2)r^2;
\]
that is,
\[
A(p, q) = 2(p^2 - 2q)(3 - 12) - 9(4q - p^2) = -9p^2.
\]
Since \(A(p, q) \leq 0 \) for all \(a, b, c \geq 0 \), by Lemma below, it suffices to prove that \(f_8(a, 1, 1) \geq 0 \) and \(f_8(0, b, c) \geq 0 \) for all \(a, b, c \geq 0 \). We have
\[
f_8(a, 1, 1) = 2a(a + 4)(a^2 + 1)(a - 1)^4 \geq 0
\]
and
\[
f_8(0, b, c) = (b^2 + c^2)(2E - 9F),
\]
where
\[
E = -4b^3c^3 + (b^2 + c^2)(b^4 + c^4), \quad F = b^2c^2(b - c)^2.
\]
Since
\[
E \geq -4b^3c^3 + 2bc(b^4 + c^4) = 2bc(b^2 - c^2)^2,
\]
we have
\[
2E - 9F \geq 4bc(b^2 - c^2)^2 - 9b^2c^2(b - c)^2 = bc(b - c)^2[4(b + c)^2 - 9bc] \geq 0.
\]
Thus, the proof is completed. The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b = c \) (or any cyclic permutation).
Lemma. Let

\[p = a + b + c, \quad q = ab + bc + ca, \quad r = abc, \]

and let \(f_8(a, b, c) \) be a symmetric homogeneous polynomial of degree eight written in the form

\[f_8(a, b, c) = A(p, q)r^2 + B(p, q)r + C(p, q), \]

where \(A(p, q) \leq 0 \) for all \(a, b, c \geq 0 \). The inequality \(f_8(a, b, c) \geq 0 \) holds for all nonnegative real numbers \(a, b, c \) if and only if \(f_8(a, 1, 1) \geq 0 \) and \(f_8(0, b, c) \geq 0 \) for all \(a, b, c \geq 0 \).

Proof. For fixed \(p \) and \(q \),

\[h_8(r) = A(p, q)r^2 + B(p, q)r + C(p, q) \]

is a concave quadratic function of \(r \). Therefore, \(h_8(r) \) is minimal when \(r \) is minimal or maximal. This is, according to P 2.57 in Volume 1, when \(b = c \) or \(a = 0 \). Thus, the conclusion follows. Notice that \(A(p, q) \) is called the highest polynomial of \(f_8(a, b, c) \).

Remark. This Lemma can be extended as follows.

- The inequality \(f_8(a, b, c) \geq 0 \) holds for all \(a, b, c \geq 0 \) satisfying \(A(p, q) \leq 0 \) if and only if \(f_8(a, 1, 1) \geq 0 \) and \(f_8(0, b, c) \geq 0 \) for all \(a, b, c \geq 0 \) such that \(A(a + 2, 2a + 1) \leq 0 \) and \(A(b + c, bc) \leq 0 \).

\(\square \)

P 1.160. If \(a, b, c \) are nonnegative real numbers, no two of which are zero, then

\[\frac{a^2 + b^2 + c^2}{ab + bc + ca} \geq 1 + \frac{9(a-b)^2(b-c)^2(c-a)^2}{(a+b)^2(b+c)^2(c+a)^2}. \]

(Vasile Cîrtoaje, 2014)

Solution. Consider the non-trivial case where \(a, b, c \) are distinct and \(a = \min\{a, b, c\} \).

Write the inequality as follows:

\[\frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{2(ab + bc + ca)} \geq \frac{9(a-b)^2(b-c)^2(c-a)^2}{(a+b)^2(b+c)^2(c+a)^2}, \]

\[\frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{(a-b)^2(b-c)^2(c-a)^2} \geq \frac{18(ab + bc + ca)}{(a+b)^2(b+c)^2(c+a)^2}, \]

\[\sum \frac{1}{(b-a)^2(c-a)^2} \geq \frac{18(ab + bc + ca)}{(a+b)^2(a+c)^2(b+c)^2}. \]

Since

\[\sum \frac{1}{(b-a)^2(c-a)^2} \geq \frac{1}{b^2c^2} + \frac{1}{b^2(b-c)^2} + \frac{1}{c^2(b-c)^2} = \frac{2(b^2 + c^2 - bc)}{b^2c^2(b-c)^2} \]
and
\[\frac{ab + bc + ca}{(a + b)^2(a + c)^2(b + c)^2} \leq \frac{ab + bc + ca}{(ab + bc + ca)^2(b + c)^2} \leq \frac{1}{bc(b + c)^2}, \]
it suffices to show that
\[\frac{b^2 + c^2 - bc}{b^2c^2(b - c)^2} \geq \frac{9}{bc(b + c)^2}. \]
Write this inequality as follows:
\[\frac{(b + c)^2 - 3bc}{bc} \geq \frac{9(b + c)^2 - 36bc}{(b + c)^2}, \]
\[\frac{(b + c)^2}{bc} - 12 + \frac{36bc}{(b + c)^2} \geq 0, \]
\[(b + c)^4 - 12bc(b + c)^2 + 36b^2c^2 \geq 0, \]
\[[(b + c)^2 - 6bc]^2 \geq 0. \]
Thus, the proof is completed. The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b/c + c/b = 4 \) (or any cyclic permutation).

\[\square \]

P 1.161. If \(a, b, c \) are nonnegative real numbers, no two of which are zero, then
\[\frac{a^2 + b^2 + c^2}{ab + bc + ca} \geq 1 + (1 + \sqrt{2}) \frac{(a-b)(b-c)(c-a)}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)}. \]
(Vasile Cirtoaje, 2014)

Solution. Consider the non-trivial case where \(a, b, c \) are distinct and denote \(k = 1 + \sqrt{2} \). Write the inequality as follows:
\[\frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{2(ab + bc + ca)} \geq \frac{k^2(a-b)(b-c)(c-a)}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)}, \]
\[\frac{(a-b)^2 + (b-c)^2 + (c-a)^2}{(a-b)^2(b-c)^2(c-a)^2} \geq \frac{2k^2(ab + bc + ca)}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)}, \]
\[\sum \frac{1}{(b-a)^2(c-a)^2} \geq \frac{2k^2(ab + bc + ca)}{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)}. \]
Assume that \(a = \min\{a, b, c\} \), and use the substitution
\[b = a + x, \quad c = a + y, \quad x, y \geq 0. \]
The inequality becomes
\[
\frac{1}{x^2y^2} + \frac{1}{x^2(x - y)^2} + \frac{1}{y^2(x - y)^2} \geq 2k^2 f(a),
\]
where
\[
f(a) = \frac{3a^2 + 2(x + y)a + xy}{(2a^2 + 2xa + x^2)(2a^2 + 2ya + y^2)[2a^2 + 2(x + y)a + x^2 + y^2]}.
\]
We will show that
\[
\frac{1}{x^2y^2} + \frac{1}{x^2(x - y)^2} + \frac{1}{y^2(x - y)^2} \geq 2k^2 f(0) \geq 2k^2 f(a).
\]
We have
\[
\begin{align*}
\frac{1}{x^2y^2} + \frac{1}{x^2(x - y)^2} + \frac{1}{y^2(x - y)^2} - 2k^2 f(0) &= \frac{2(x^2 + y^2 - xy)}{x^2y^2(x - y)^2} - \frac{2k^2xy}{x^2y^2(x + y^2)} \\
&= \frac{2(x^2 + y^2 - (2 + \sqrt{2})xy)^2}{x^2y^2(x - y)^2(x^2 - xy + y^2)} \geq 0.
\end{align*}
\]
Also, since
\[
(2a^2 + 2xa + x^2)(2a^2 + 2ya + y^2) \geq 2(x^2 + y^2)a^2 + 2xy(x + y)a + x^2y^2
\]
and
\[
2a^2 + 2(x + y)a + x^2 + y^2 \geq x^2 + y^2,
\]
we get \(f(a) \leq g(a) \), where
\[
g(a) = \frac{3a^2 + 2(x + y)a + xy}{[2(x^2 + y^2)a^2 + 2xy(x + y)a + x^2y^2](x^2 + y^2)}.
\]
Therefore,
\[
\begin{align*}
f(0) - f(a) &\geq \frac{1}{xy(x^2 + y^2)} - g(a) \\
&= \frac{(2x^2 + 2y^2 - 3xy)a^2}{xy(x^2 + y^2)[2(x^2 + y^2)a^2 + 2xy(x + y)a + x^2y^2]} \geq 0.
\end{align*}
\]
Thus, the proof is completed. The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b/c + c/b = 2 + \sqrt{2} \) (or any cyclic permutation).
P 1.162. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$\frac{2}{a + b} + \frac{2}{b + c} + \frac{2}{c + a} \geq \frac{5}{3a + b + c} + \frac{5}{3b + c + a} + \frac{5}{3c + a + b}.$$

Solution. Write the inequality as follows:

\[
\sum \left(\frac{2}{b + c} - \frac{5}{3a + b + c} \right) \geq 0,
\]

\[
\sum \frac{2a - b - c}{(b + c)(3a + b + c)} \geq 0,
\]

\[
\sum \frac{a - b}{(b + c)(3a + b + c)} + \sum \frac{a - c}{(b + c)(3a + b + c)} \geq 0,
\]

\[
\sum \frac{a - b}{(b + c)(3a + b + c)} + \sum \frac{b - a}{(c + a)(3b + c + a)} \geq 0,
\]

\[
\sum \frac{(a - b)^2(a + b - c)}{(b + c)(c + a)(3a + b + c)(3b + c + a)},
\]

\[
\sum (b - c)^2S_a \geq 0,
\]

where

\[
S_a = (b + c - a)(b + c)(3a + b + c).
\]

Assume that $a \geq b \geq c$. Since $S_c > 0$, it suffices to show that

\[(b - c)^2S_a + (a - c)^2S_b \geq 0.\]

Since $S_b \geq 0$ and $(a - c)^2 \geq (b - c)^2$, we have

\[(b - c)^2S_a + (a - c)^2S_b \geq (b - c)^2S_a + (b - c)^2S_b = (b - c)^2(S_a + S_b).\]

Thus, it is enough to prove that $S_a + S_b \geq 0$, which is equivalent to

\[(c + a - b)(c + a)(3b + c + a) \geq (b + c - a)(b + c)(3a + b + c).\]

Consider the nontrivial case where $b + c - a > 0$. Since $c + a - b \geq b + c - a$, we only need to show that

\[(c + a)(3b + c + a) \geq (b + c)(3a + b + c).\]

Indeed,

\[(c + a)(3b + c + a) - (b + c)(3a + b + c) = (a - b)(a + b - c) \geq 0.\]

Thus, the proof is completed. The equality holds for $a = b = c$, and also for $a = 0$ and $b = c$ (or any cyclic permutation). \qed
P 1.163. If a, b, c are real numbers, no two of which are zero, then

(a) \[\frac{8a^2 + 3bc}{b^2 + bc + c^2} + \frac{8b^2 + 3ca}{c^2 + ca + a^2} + \frac{8c^2 + 3ab}{a^2 + ab + b^2} \geq 11; \]

(b) \[\frac{8a^2 - 5bc}{b^2 - bc + c^2} + \frac{8b^2 - 5ca}{c^2 - ca + a^2} + \frac{8c^2 - 5ab}{a^2 - ab + b^2} \geq 9. \]

(Vasile Cirtoaje, 2011)

Solution. Consider the more general inequality

\[
\frac{a^2 + mbc}{b^2 + kbc + c^2} + \frac{b^2 + mca}{c^2 + kca + a^2} + \frac{c^2 + mab}{a^2 + kab + b^2} \geq \frac{3(m+1)}{k+2}.
\]

Let $p = a + b + c$ and $q = ab + bc + ca$. Write the inequality in the form $f_6(a, b, c) \geq 0$, where

\[
f_6(a, b, c) = (k+2) \sum (a^2 + mbc)(a^2 + kab + b^2)(a^2 + kac + c^2) - 3(m+1) \prod (b^2 + kbc + c^2).
\]

From

\[
f_6(a, b, c) = (k+2) \sum (a^2 + mbc)(kab - c^2 + p^2 - 2q)(kac - b^2 + p^2 - 2q) - 3(m+1) \prod (kbc - a^2 + p^2 - 2q).
\]

it follows that $f_6(a, b, c)$ has the same highest coefficient A as

\[
(k+2)P_2(a, b, c) - 3(m+1)P_3(a, b, c),
\]

where

\[
P_2(a, b, c) = \sum (a^2 + mbc)(kab - c^2)(kac - b^2),
\]

\[
P_3(a, b, c) = \prod (kbc - a^2).
\]

According to Remark 2 from P 1.75 in Volume 1,

\[
A = (k+2)P_2(1, 1, 1) - 3(m+1)P_3(1, 1, 1) = 3(k+2)(m+1)(k-1)^2 - 3(m+1)(k-1)^3 = 9(m+1)(k-1)^2.
\]

Also, we have

\[
f_6(a, 1, 1) = (k+2)(a^2 + ka + 1)(a - 1)^2[a^2 + (k+2)a + 1 + 2k - 2m].
\]

(a) For our particular case $m = 3/8$ and $k = 1$, we have $A = 0$. Therefore, according to P 1.75 in Volume 1, it suffices to prove that $f_6(a, 1, 1) \geq 0$ for all real a. Indeed,

\[
f_6(a, 1, 1) = 3(a^2 + a + 1)(a - 1)^2 \left(a + \frac{3}{2} \right)^2 \geq 0.
\]
Thus, the proof is completed. The equality holds for \(a = b = c\), and also for \(-2a/3 = b = c\) (or any cyclic permutation).

(b) For \(m = -5/8\) and \(k = -1\), we have \(A = 27/2\) and

\[
f_6(a, 1, 1) = \frac{1}{4}(a^2 - a + 1)(a - 1)^2(2a + 1)^2.
\]

Since \(A > 0\), we will use the highest coefficient cancellation method. Define the homogeneous polynomial

\[
P(a, b, c) = r + Bp^3 + Cpq,
\]

where \(B\) and \(C\) are real constants. Since the desired inequality becomes an equality for \(a = b = c = 1\), and also for \(a = -1\) and \(b = c = 2\), determine \(B\) and \(C\) such that

\[
P(1, 1, 1) = P(-1, 2, 2) = 0.
\]

We find

\[
B = \frac{4}{27}, \quad C = \frac{-5}{9},
\]

when

\[
P(a, 1, 1) = \frac{2}{27}(a - 1)^2(2a + 1), \quad P(a, 0, 0) = Ba^3 = \frac{4}{27}a^3.
\]

We will show that

\[
f_6(a, b, c) \geq \frac{27}{2}p^2(a, b, c).
\]

Let us denote

\[
g_6(a, b, c) = f_6(a, b, c) - \frac{27}{2}p^2(a, b, c).
\]

Since \(g_6(a, b, c)\) has the highest coefficient \(A = 0\), it suffices to prove that \(g_6(a, 1, 1) \geq 0\) for all real \(a\) (see P 1.75 in Volume 1). Indeed,

\[
g_6(a, 1, 1) = f_6(a, 1, 1) - \frac{27}{2}p^2(a, 1, 1) = \frac{1}{108}(a - 1)^2(2a + 1)^2(19a^2 - 11a + 19) \geq 0.
\]

Thus, the proof is completed. The equality holds for \(a = b = c\), and also for \(-2a = b = c\) (or any cyclic permutation).

\[\square\]

P 1.164. If \(a, b, c\) are real numbers, no two of which are zero, then

\[
\frac{4a^2 + bc}{4b^2 + 7bc + 4c^2} + \frac{4b^2 + ca}{4c^2 + 7ca + 4a^2} + \frac{4c^2 + ab}{4a^2 + 7ab + 4b^2} \geq 1.
\]

(Vasile Cîrtoaje, 2011)
Solution. Write the inequality as $f_6(a, b, c) \geq 0$, where
\[
f_6(a, b, c) = \sum (4a^2 + bc)(4a^2 + 7ab + 4b^2)(4a^2 + 7ac + 4c^2) - \prod (4b^2 + 7bc + 4c^2).
\]
Let
\[
p = a + b + c, \quad q = ab + bc + ca, \quad r = abc.
\]
From
\[
f_6(a, b, c) = \sum (4a^2 + bc)(7ab - 4c^2 + 4p^2 - 8q)(7ac - 4b^2 + 4p^2 - 8q)
\]
\[
- \prod (7bc - 4a^2 + 4p^2 - 8q),
\]
it follows that $f_6(a, b, c)$ has the same highest coefficient A as
\[
P_2(a, b, c) - P_3(a, b, c),
\]
where
\[
P_2(a, b, c) = \sum (4a^2 + bc)(7ab - 4c^2),
\]
\[
P_3(a, b, c) = \prod (7bc - 4a^2).
\]
According to Remark 2 from P 1.75 in Volume 1,
\[
A = P_2(1, 1, 1) - P_3(1, 1, 1) = 135 - 27 = 108.
\]
Since $A > 0$, we will apply the highest coefficient cancellation method. Define the homogeneous polynomial
\[
P(a, b, c) = r + Bp^3 + Cpq,
\]
where B and C are real constants. We will show that there are two real numbers B and C such that the following sharper inequality holds
\[
f_6(a, b, c) \geq 108p^2(a, b, c).
\]
Let us denote
\[
g_6(a, b, c) = f_6(a, b, c) - 108p^2(a, b, c).
\]
Clearly, $g_6(a, b, c)$ has the highest coefficient $A_1 = 0$. Then, by P 1.75 in Volume 1, it suffices to prove that $g_6(a, 1, 1) \geq 0$ for all real a.

We have
\[
g_6(a, 1, 1) = f_6(a, 1, 1) - 108p^2(a, 1, 1),
\]
where
\[
f_6(a, 1, 1) = 4(4a^2 + 7a + 4)(a - 1)^2(4a^2 + 15a + 16),
\]
\[
P(a, 1, 1) = a + B(a + 2)^3 + C(a + 2)(2a + 1).
Let us denote \(g(a) = f_6(a, 1, 1) \). Since \(g(-2) = 0 \), we can have \(g(a) \geq 0 \) in the vicinity of \(a = -2 \) only if \(g'(-2) = 0 \), which involves \(C = -5/9 \). On the other hand, from \(g(1) = 0 \), we get \(B = 4/27 \). For these values of \(B \) and \(C \), we get

\[
P(a, 1, 1) = \frac{2(a - 1)^2(2a + 1)}{27},
\]

\[
g_6(a, 1, 1) = \frac{4}{27}(a - 1)^2(a + 2)^2(416a^2 + 728a + 431) \geq 0.
\]

The proof is completed. The equality holds for \(a = b = c \), and for \(a = 0 \) and \(b + c = 0 \) (or any cyclic permutation).

\[\square\]

P 1.165. If \(a, b, c \) are real numbers, no two of which are equal, then

\[
\frac{1}{(a - b)^2} + \frac{1}{(b - c)^2} + \frac{1}{(c - a)^2} \geq \frac{27}{4(a^2 + b^2 + c^2 - ab - bc - ca)}.
\]

First Solution. Write the inequality as follows

\[
\left[(a - b)^2 + (b - c)^2 + (a - c)^2 \right] \left[\frac{1}{(a - b)^2} + \frac{1}{(b - c)^2} + \frac{1}{(a - c)^2} \right] \geq \frac{27}{2},
\]

\[
\left[\frac{(a - b)^2}{(a - c)^2} + \frac{(b - c)^2}{(a - c)^2} + 1 \right] \left[\frac{(a - c)^2}{(a - b)^2} + \frac{(b - c)^2}{(b - c)^2} + 1 \right] \geq \frac{27}{2},
\]

\[
(x^2 + y^2 + 1) \left(\frac{1}{x^2} + \frac{1}{y^2} + 1 \right) \geq \frac{27}{2},
\]

where

\[
x = \frac{a - b}{a - c}, \quad y = \frac{b - c}{a - c}, \quad x + y = 1.
\]

We have

\[
(x^2 + y^2 + 1) \left(\frac{1}{x^2} + \frac{1}{y^2} + 1 \right) - \frac{27}{2} = \frac{(x + 1)^2(x - 2)^2(2x - 1)^2}{2x^2(1-x)^2} \geq 0.
\]

The proof is completed. The equality holds for \(2a = b + c \) (or any cyclic permutation).

Second Solution. Assume that \(a > b > c \). We have

\[
\frac{1}{(a - b)^2} + \frac{1}{(b - c)^2} \geq \frac{2}{(a - b)(b - c)} \geq \frac{8}{[(a - b) + (b - c)]^2} = \frac{8}{(a - c)^2}.
\]
Therefore, it suffices to show that
\[
\frac{9}{(a-c)^2} \geq \frac{27}{4(a^2 + b^2 + c^2 - ab - bc - ca)},
\]
which is equivalent to
\[
(a - 2b + c)^2 \geq 0.
\]

Third Solution. Write the inequality as
\[
f_6(a, b, c) \geq 0,
\]
where
\[
f_6(a, b, c) = 4(a^2 + b^2 + c^2 - ab - bc - ca) \sum (a-b)^2(a-c)^2 - 27(a-b)^2(b-c)^2(c-a)^2.
\]
Clearly, \(f_6(a, b, c)\) has the same highest coefficient \(A\) as
\[
-27(a-b)^2(b-c)^2(c-a)^2;
\]
that is,
\[
A = -27(-27) = 729.
\]
Since \(A > 0\), we will use the highest coefficient cancellation method. Define the homogeneous polynomial
\[
P(a, b, c) = abc + B(a + b + c)^3 - \left(3B + \frac{1}{9}\right)(a + b + c)(ab + bc + ca),
\]
which satisfies the property \(P(1, 1, 1) = 0\). We will show that there is a real value of \(B\) such that the following sharper inequality holds
\[
f_6(a, b, c) \geq 729P^2(a, b, c).
\]
Let us denote
\[
g_6(a, b, c) = f_6(a, b, c) - 729P^2(a, b, c).
\]
Clearly, \(g_6(a, b, c)\) has the highest coefficient \(A_1 = 0\). Then, by P 1.75 in Volume 1, it suffices to prove that \(g_6(a, 1, 1) \geq 0\) for all real \(a\).
We have
\[
f_6(a, 1, 1) = 4(a - 1)^6
\]
and
\[
P(a, 1, 1) = \frac{1}{9}(a - 1)^2[9B(a + 2) + 2],
\]

hence
\[
g_6(a, 1, 1) = f_6(a, 1, 1) - 729P^2(a, 1, 1) = (27B + 2)(a-1)^4(a+2)[(2-27B)a-54B-8].
\]
Choosing \(B = -2/27\), we get \(g_6(a, 1, 1) = 0\) for all real \(a\).

Remark. The inequality is equivalent to
\[
(a - 2b + c)^2(b - 2c + a)^2(c - 2a + b)^2 \geq 0.
\]
\textbf{P 1.166.} If \(a, b, c\) are real numbers, no two of which are zero, then
\[\frac{1}{a^2 - ab + b^2} + \frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} \geq \frac{14}{3(a^2 + b^2 + c^2)}.\]

\textit{(Vasile Cîrtoaje and BJSL, 2014)}

\textbf{Solution.} Write the inequality as \(f_6(a, b, c) \geq 0\), where
\[f_6(a, b, c) = 3(a^2 + b^2 + c^2) \sum (a^2 - ab + b^2)(a^2 - ac + c^2) - 14(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2).\]

Clearly, \(f_6(a, b, c)\) has the same highest coefficient \(A\) as
\[-14(a^2 - ab + b^2)(b^2 - bc + c^2)(c^2 - ca + a^2),\]

hence as
\[f(a, b, c) = -14(-c^2 - ab)(-a^2 - bc)(-b^2 - ca);\]

that is, according to Remark 2 from P 1.75 in Volume 1,
\[A = f(1, 1, 1) = -14(-2)^2 = 112.\]

Since \(A > 0\), we apply the \textit{highest coefficient cancellation method}. Define the homogeneous polynomial
\[P(a, b, c) = abc + B(a + b + c)^3 + C(a + b + c)(ab + bc + ca)\]

We will show that there are two real numbers \(B\) and \(C\) such that the following sharper inequality holds
\[f_6(a, b, c) \geq 112P^2(a, b, c).\]

Let us denote
\[g_6(a, b, c) = f_6(a, b, c) - 112P^2(a, b, c).\]

Clearly, \(g_6(a, b, c)\) has the highest coefficient \(A_1 = 0\). By P 1.75 in Volume 1, it suffices to prove that \(g_6(a, 1, 1) \geq 0\) for all real \(a\).

We have
\[g_6(a, 1, 1) = f_6(a, 1, 1) - 112P^2(a, 1, 1),\]

where
\[f_6(a, 1, 1) = (a^2 - a + 1)(3a^4 - 3a^3 + a^2 + 8a + 4),\]
\[P(a, 1, 1) = 1 + B(a + 2)^3 + C(a + 2)(2a + 1).\]

Let us denote \(g(a) = g_6(a, 1, 1)\). Since \(g(-2) = 0\), we can have \(g(a) \geq 0\) in the vicinity of \(a = -2\) only if \(g'(-2) = 0\), which involves \(C = -4/7\). In addition, setting \(B = 9/56\), we get
\[P(a, 1, 1) = \frac{1}{56}(9a^3 - 10a^2 + 4a + 8),\]
\[g_6(a, 1, 1) = \frac{3}{28} (a^6 + 4a^5 + 8a^4 + 16a^3 + 20a^2 + 16a + 16) \]
\[= \frac{3(a + 2)^2(a^2 + 2)^2}{28} \geq 0. \]

The proof is completed. The equality holds for \(a = 0 \) and \(b + c = 0 \) (or any cyclic permutation).

\[\square \]

P 1.167. Let \(a, b, c \) be real numbers such that \(ab + bc + ca \geq 0 \) and no two of which are zero. Prove that

\(a \)
\[
\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq \frac{3}{2};
\]

\(b \) if \(ab \leq 0 \), then
\[
\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq 2.
\]

(Vasile Cîrtoaje, 2014)

Solution. Let us show first that \(b + c \neq 0 \), \(c + a \neq 0 \) and \(a + b \neq 0 \). Indeed, if \(b + c = 0 \), then \(ab + bc + ca \geq 0 \) yields \(b = c = 0 \), which is not possible.

(a) Write the inequality as follows

\[
\sum \left(\frac{a}{b + c} + 1 \right) \geq \frac{9}{2},
\]

\[
\left[\sum (b + c) \right] \left(\sum \frac{1}{b + c} \right) \geq 9,
\]

\[
\sum \left(\frac{a + b}{a + c} + \frac{a + c}{a + b} - 2 \right) \geq 0,
\]

\[
\sum \frac{(b - c)^2}{(a + b)(a + c)} \geq 0,
\]

\[
\sum \frac{(b - c)^2}{a^2 + (ab + bc + ca)} \geq 0.
\]

Clearly, the last inequality is true. The equality holds for \(a = b = c \neq 0 \).

(b) From \(ab + bc + ca \geq 0 \), it follows that if one of \(a, b, c \) is zero, then the others are the same sign. In this case, the desired inequality is trivial. So, due to symmetry and homogeneity, it suffices to consider that \(a < 0 < b \leq c \).
First Solution. We will show that

\[F(a, b, c) > F(0, b, c) \geq 2, \]

where

\[F(a, b, c) = \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b}. \]

We have

\[F(0, b, c) = \frac{b}{c} + \frac{c}{b} \geq 2 \]

and

\[F(a, b, c) - F(0, b, c) = a \left[\frac{1}{b + c} - \frac{b}{c(c + a)} - \frac{c}{b(a + b)} \right]. \]

Since \(a < 0 \), we need to show that

\[\frac{b}{c(c + a)} + \frac{c}{b(a + b)} > \frac{1}{b + c}. \]

From \(ab + bc + ca \geq 0 \), we get

\[c + a \geq \frac{-ca}{b} > 0, \quad a + b \geq \frac{-ab}{c} > 0, \]

hence

\[\frac{b}{c(c + a)} > \frac{b}{c^2}, \quad \frac{c}{b(a + b)} > \frac{c}{b^2}. \]

Therefore, it suffices to prove that

\[\frac{b}{c^2} + \frac{c}{b^2} \geq \frac{1}{b + c}. \]

Indeed, by virtue of the AM-GM inequality, we have

\[\frac{b}{c^2} + \frac{c}{b^2} - \frac{1}{b + c} \geq \frac{2}{\sqrt{bc}} - \frac{1}{2\sqrt{bc}} > 0. \]

This completes the proof. The equality holds for \(a = 0 \) and \(b = c \), or \(b = 0 \) and \(a = c \).

Second Solution. Since \(b + c > 0 \) and

\[(b + c)(a + b) = b^2 + (ab + bc + ca) > 0, \quad (b + c)(c + a) = c^2 + (ab + bc + ca) > 0, \]

we get \(a + b > 0 \) and \(c + a > 0 \). By virtue of the Cauchy-Schwarz inequality and AM-GM inequality, we have
\[
\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq \frac{a}{b + c} + \frac{(b + c)^2}{b(c + a) + c(a + b)}
\]

\[
> \frac{a}{2a + b + c} + \frac{(b + c)^2}{2(b + c)} + a(b + c)
\]

\[
> \frac{4a}{2a + b + c} + \frac{2(b + c)}{2a + b + c} = 2.
\]

\[\square \]

P 1.168. If \(a, b, c \) are nonnegative real numbers, then

\[
\frac{a}{7a + b + c} + \frac{b}{7b + c + a} + \frac{c}{7c + a + b} \geq \frac{ab + bc + ca}{(a + b + c)^2}.
\]

(\textit{Vasile Cîrtoaje, 2014})

First Solution. Write the inequality as follows:

\[
\sum \left[\frac{2a}{7a + b + c} - \frac{a(b + c)}{(a + b + c)^2} \right] \geq 0,
\]

\[
\sum \frac{a[(a - b) + (a - c)](a - b - c)}{7a + b + c} \geq 0,
\]

\[
\sum \frac{a(a - b)(a - b - c)}{7a + b + c} + \sum \frac{a(a - c)(a - b - c)}{7a + b + c} \geq 0,
\]

\[
\sum \frac{a(a - b)(a - b - c)}{7a + b + c} + \sum \frac{b(b - a)(b - c - a)}{7b + c + a} \geq 0,
\]

\[
\sum (a - b) \left[\frac{a(a - b - c)}{7a + b + c} - \frac{b(b - c - a)}{7b + c + a} \right] \geq 0,
\]

\[
\sum (a - b)^2(a^2 + b^2 - c^2 + 14ab)(a + b + 7c) \geq 0.
\]

Since

\[
a^2 + b^2 - c^2 + 14ab \geq (a + b)^2 - c^2 = (a + b + c)(a + b - c),
\]

it suffices to show that

\[
\sum (a - b)^2(a + b - c)(a + b + 7c) \geq 0.
\]

Assume that \(a \geq b \geq c \). It suffices to show that

\[
(a - c)^2(a - b + c)(a + 7b + c) + (b - c)^2(-a + b + c)(7a + b + c) \geq 0.
\]
Symmetric Rational Inequalities

For the nontrivial case \(b > 0 \), we have

\[
(a-c)^2 \geq \frac{a^2}{b^2}(b-c)^2 \geq \frac{a}{b}(b-c)^2.
\]

Thus, it is enough to prove that

\[
a(a-b+c)(a+7b+c)+b(-a+b+c)(7a+b+c) \geq 0.
\]

Since

\[
a(a+7b+c) \geq b(7a+b+c),
\]

we have

\[
a(a-b+c)(a+7b+c)+b(-a+b+c)(7a+b+c) \geq
\]

\[
\geq b(a-b+c)(7a+b+c)+b(-a+b+c)(7a+b+c)
\]

\[
= 2bc(7a+b+c) \geq 0.
\]

This completes the proof. The equality holds for \(a = b = c \), and also for \(a = 0 \) and \(b = c \) (or any cyclic permutation).

Second Solution. Assume that \(a \leq b \leq c \), \(a+b+c = 3 \) and use the substitution

\[
x = \frac{2a+1}{3}, \quad y = \frac{2b+1}{3}, \quad z = \frac{2c+1}{3},
\]

where \(1/3 \leq x \leq y \leq z \), \(x+y+z = 3 \). We have \(b+c \geq 2 \), \(y+z \geq 2 \), \(x \leq 1 \). The inequality becomes

\[
\frac{a}{2a+1} + \frac{b}{2b+1} + \frac{c}{2c+1} \geq \frac{9-a^2-b^2-c^2}{6},
\]

\[
9(x^2+y^2+z^2) \geq 4\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) + 17.
\]

Assume that \(x \leq y \leq z \) and show that

\[
E(x, y, z) \geq E(x, t, t) \geq 0,
\]

where

\[
t = (y+z)/2 = (3-x)/2
\]

and

\[
E(x, y, z) = 9(x^2+y^2+z^2) - 4\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) - 17.
\]
We have

\[E(x, y, z) - E(x, t, t) = 9(y^2 + z^2 - 2t^2) - 4 \left(\frac{1}{y} + \frac{1}{z} - \frac{2}{t} \right) \]

\[= \frac{(y - z)^2[9yz(y + z) - 8]}{2yz(y + z)} \geq 0, \]

since

\[9yz = (2b + 1)(2c + 1) \geq 2(b + c) + 1 \geq 5, \quad y + z \geq 2. \]

Also,

\[E(x, t, t) = 9x^2 + 2t^2 - 15 - \frac{4}{x} - \frac{8}{t} = \frac{(x - 1)^2(3x - 1)(8 - 3x)}{2x(3 - x)} \geq 0. \]

Third Solution. Write the inequality as \(f_5(a, b, c) \geq 0 \), where \(f_5(a, b, c) \) is a symmetric homogeneous inequality of degree five. According to P 2.68-(a) in Volume 1, it suffices to prove the inequality for \(a = 0 \) and for \(b = c = 1 \). For \(a = 0 \), the inequality is equivalent to

\[(b - c)^2(b^2 + c^2 + 11bc) \geq 0, \]

while, for \(b = c = 1 \), the inequality is equivalent to

\[a(a - 1)^2(a + 14) \geq 0. \]

\[\square \]

P 1.169. If \(a, b, c \) are the lengths of the sides of a triangle, then

\[\frac{a^2}{4a^2 + 5bc} + \frac{b^2}{4b^2 + 5ca} + \frac{c^2}{4c^2 + 5ab} \geq \frac{1}{3}. \]

(Vasile Cîrtoaje, 2009)

Solution. Write the inequality as \(f_6(a, b, c) \geq 0 \), where

\[f_6(a, b, c) = 3 \sum a^2(4b^2 + 5ca)(4c^2 + 5ab) - \prod (4a^2 + 5bc) \]

\[= -45a^2b^2c^2 - 25abc \sum a^3 + 40 \sum a^3b^3. \]

Since \(f_6(a, b, c) \) has the highest coefficient

\[A = -45 - 75 + 120 = 0, \]
according to 2.67-(b), it suffices to prove the original inequality \(b = c = 1 \) and \(0 \leq a \leq 2 \), and for \(a = b + c \).

Case 1: \(b = c = 1 \), \(0 \leq a \leq 2 \). The original inequality reduces to

\[
(2 - a)(a - 1)^2 \geq 0,
\]

which is true.

Case 2: \(a = b + c \). Using the Cauchy-Schwarz inequality

\[
\frac{b^2}{4b^2 + 5ca} + \frac{c^2}{4c^2 + 5ab} \geq \frac{(b + c)^2}{4(b^2 + c^2) + 5a(b + c)},
\]

it suffices to show that

\[
\frac{a^2}{4a^2 + 5bc} + \frac{(b + c)^2}{4(b^2 + c^2) + 5a(b + c)} \geq \frac{1}{3},
\]

which reduces to the obvious inequality

\[
(b - c)^2(3b^2 + 3c^2 - 4bc) \geq 0.
\]

The equality holds for an equilateral triangle, and for a degenerate triangle with \(a/2 = b = c \) (or any cyclic permutation).

\(\square \)

P 1.170. If \(a, b, c \) are the lengths of the sides of a triangle, then

\[
\frac{1}{7a^2 + b^2 + c^2} + \frac{1}{7b^2 + c^2 + a^2} + \frac{1}{7c^2 + a^2 + b^2} \geq \frac{3}{(a + b + c)^2},
\]

(Vo Quoc Ba Can, 2010)

Solution. Let \(p = a + b + c \) and \(q = ab + bc + ca \). Write the inequality as \(f_6(a, b, c) \geq 0 \), where

\[
f_6(a, b, c) = p^2 \sum(7b^2 + c^2 + a^2)(7c^2 + a^2 + b^2) - 3 \prod(7a^2 + b^2 + c^2)
\]

\[
= p^2 \sum(6b^2 + p^2 - 2q)(6c^2 + p^2 - 2q) - 3 \prod(6a^2 + p^2 - 2q).
\]

Since \(f_6(a, b, c) \) has the highest coefficient

\[
A = -3(6^3) < 0,
\]

according to 2.67-(b), it suffices to prove the original inequality \(b = c = 1 \) and \(0 \leq a \leq 2 \), and for \(a = b + c \).
Case 1: \(b = c = 1, 0 \leq a \leq 2 \). The original inequality reduces to
\[
a(8-a)(a-1)^2 \geq 0,
\]
which is true.

Case 2: \(a = b + c \). Write the inequality as
\[
\frac{1}{4(b^2 + c^2) + 7bc} + \frac{1}{4b^2 + c^2 + bc} + \frac{1}{4c^2 + b^2 + bc} \geq \frac{3}{2(b + c)^2},
\]
\[
\frac{1}{4x + 7} + \frac{5x + 2}{4x^2 + 5x + 10} \geq \frac{3}{2(x + 2)},
\]
where \(x = b/c + c/b, x \geq 2 \). This inequality is equivalent to the obvious inequality
\[
16x^2 + 5x - 38 \geq 0.
\]
The equality holds for an equilateral triangle, and for a degenerate triangle with \(a = 0 \) and \(b = c \) (or any cyclic permutation).
\(\square \)

P 1.171. Let \(a, b, c \) be the lengths of the sides of a triangle. If \(k > -2 \), then
\[
\sum a(b + c) + (k + 1)bc \leq \frac{3(k + 3)}{k + 2}.
\]
(Vasile Cîrtoaje, 2009)

Solution. Let \(p = a + b + c \) and \(q = ab + bc + ca \). Write the inequality as \(f_6(a, b, c) \geq 0 \), where
\[
f_6(a, b, c) = 3(k + 3) \prod (b^2 + kbc + c^2)
\]
\[-(k + 2) \sum [a(b + c) + (k + 1)bc](c^2 + kca + a^2)(a^2 + kab + b^2)
\]
\[= 3(k + 3) \prod (p^2 - 2q + kbc - a^2)
\]
\[-(k + 2) \sum (q + kbc)(p^2 - 2q + kca - b^2)(p^2 - 2q + kab - c^2).
\]
Since \(f_6(a, b, c) \) has the same highest coefficient \(A \) as \(f(a, b, c) \), where
\[
f(a, b, c) = 3(k + 3) \prod (kbc - a^2) - k(k + 2) \sum bc(kca - b^2)(kab - c^2)
\]
\[
= 3(k + 3)[(k^3 - 1)a^2b^2c^2 - k^2abc \sum a^3 + k \sum a^3b^2]
\]
\[-k(k + 2)(3k^2a^2b^2c^2 - 2kabc \sum a^3 + \sum a^3b^3),
\]
we get
\[A = 3(k + 3)(k^3 - 1 - 3k^2 + 3k) - k(k + 2)(3k^2 - 6k + 3) = -9(k - 1)^2 \leq 0. \]

According to 2.67-(b), it suffices to prove the original inequality \(b = c = 1 \) and \(0 \leq a \leq 2 \), and for \(a = b + c \).

Case 1: \(b = c = 1, 0 \leq a \leq 2 \). The original inequality reduces to
\[(2-a)(a-1)^2 \geq 0, \]
which is true.

Case 2: \(a = b + c \). Write the inequality as follows
\[
\sum \left[a(b+c) + (k+1)bc \right] \leq \frac{3}{k+2},
\]
\[
\sum \left(\frac{ab + bc + ca - b^2 - c^2}{b^2 + kbc + c^2} \right) \leq \frac{3}{k+2},
\]
\[
\frac{3bc}{b^2 + kbc + c^2} + \frac{bc - c^2}{b^2 + (k+2)(bc + c^2)} + \frac{bc - b^2}{c^2 + (k+2)(bc + b^2)} \leq \frac{3}{k+2}.
\]

Since
\[
\frac{3bc}{b^2 + kbc + c^2} \leq \frac{3}{k+2},
\]
it suffices to prove that
\[
\frac{bc - c^2}{b^2 + (k+2)(bc + c^2)} + \frac{bc - b^2}{c^2 + (k+2)(bc + b^2)} \leq 0.
\]

This reduces to the obvious inequality
\[
(b-c)^2(b^2 + bc + c^2) \geq 0.
\]

The equality holds for an equilateral triangle, and for a degenerate triangle with \(a/2 = b = c \) (or any cyclic permutation).

\[\square \]

P 1.172. Let \(a, b, c \) be the lengths of the sides of a triangle. If \(k > -2 \), then
\[
\sum \frac{2a^2 + (4k + 9)bc}{b^2 + kbc + c^2} \leq \frac{3(4k + 11)}{k + 2}.
\]

(\textit{Vasile Cirtoaje, 2009})
Solution. Let $p = a + b + c$ and $q = ab + bc + ca$. Write the inequality as $f_6(a, b, c) \geq 0$, where

$$f_6(a, b, c) = 3(4k + 11) \prod (b^2 + kbc + c^2)$$

$$-(k + 2) \sum [2a^2 + (4k + 9)bc](c^2 + kca + a^2)(a^2 + kab + b^2)$$

$$= 3(4k + 11) \prod (p^2 - 2q + kbc - a^2)$$

$$-(k + 2) \sum [2a^2 + (4k + 9)bc](p^2 - 2q + kca - b^2)(p^2 - 2q + kab - c^2).$$

Since $f_6(a, b, c)$ has the same highest coefficient A as $f(a, b, c)$, where

$$f(a, b, c) = 3(4k + 11) \prod (kbc - a^2)$$

$$-(k + 2) \sum [2a^2 + (4k + 9)bc](kca - b^2)(kab - c^2)$$

$$= 3(4k + 11)[(k^3 - 1)a^2b^2c^2 - k^2abc \sum a^3 + k \sum a^3b^3]$$

$$-(k + 2)[3(4k^3 + 9k^2 + 2)a^2b^2c^2 - 6k(k + 3)abc \sum a^3 + 9 \sum a^3b^3],$$

we get

$$A = 3(4k + 11)(k^3 - 1 - 3k^2 + 3k) - (k + 2)[3(4k^3 + 9k^2 + 2) - 18k(k + 3) + 27]$$

$$= -9(4k + 11)(k - 1)^2 \leq 0.$$

According to 2.67-(b), it suffices to prove the original inequality $b = c = 1$ and $0 \leq a \leq 2$, and for $a = b + c$.

Case 1: $b = c = 1$, $0 \leq a \leq 2$. The original inequality reduces to

$$(2 - a)(a - 1)^2 \geq 0,$$

which is true.

Case 2: $a = b + c$. Write the inequality as follows

$$\sum \left[\frac{2a^2 + (4k + 9)bc}{b^2 + kbc + c^2} - 2 \right] \leq \frac{3(2k + 7)}{k + 2},$$

$$\sum \frac{2(a^2 - b^2 - c^2) + (2k + 9)bc}{b^2 + kbc + c^2} \leq \frac{3(2k + 7)}{k + 2},$$

$$\frac{(2k + 13)bc}{b^2 + kbc + c^2} + (2k + 5)(b + c)\left[\frac{c}{b^2 + (k + 2)(bc + c^2)} + \frac{b}{c^2 + (k + 2)(bc + b^2)} \right] \leq \frac{3(2k + 7)}{k + 2}.$$
Using the substitution \(x = b/c + c/b, \ x \geq 2 \), the inequality can be written as
\[
\frac{2k + 13}{x + k} + \frac{(2k + 5)(x + 2)(x + 2k + 3)}{(k + 2)x^2 + (k + 2)(k + 3)x + 2k^2 + 6k + 5} \leq \frac{3(2k + 7)}{k + 2},
\]
where
\[
(x - 2)(4(k + 2)Ax^2 + 2(k + 2)Bx + C) \geq 0,
\]
where
\[
A = k + 4, \quad B = 2k^2 + 13k + 22, \quad C = 8k^3 + 51k^2 + 98k + 65.
\]
The inequality is true since \(A > 0, \ B = 2(k + 2)^2 + 5(k + 2) + 4 > 0, \)
\[
C = 8(k + 2)^3 + 2k^2 + (k + 1)^2 > 0.
\]
The equality holds for an equilateral triangle, and for a degenerate triangle with \(a/2 = b = c \) (or any cyclic permutation).

\[\square\]

P 1.173. If \(a \geq b \geq c \geq d \) such that \(abcd = 1 \), then
\[
\frac{1}{1 + a} + \frac{1}{1 + b} + \frac{1}{1 + c} \geq \frac{3}{1 + \sqrt[3]{abc}}.
\]

(Vasile Cîrtoaje, 2008)

Solution. We can get this inequality by summing the inequalities below
\[
\frac{1}{1 + a} + \frac{1}{1 + b} \geq \frac{2}{1 + \sqrt{ab}},
\]
\[
\frac{1}{1 + c} + \frac{2}{1 + \sqrt{ab}} \geq \frac{3}{1 + \sqrt{abc}}.
\]
The first inequality is true, since
\[
\frac{1}{1 + a} + \frac{1}{1 + b} - \frac{2}{1 + \sqrt{ab}} = \left(\frac{1}{1 + a} - \frac{1}{1 + \sqrt{ab}}\right) + \left(\frac{1}{1 + b} - \frac{1}{1 + \sqrt{ab}}\right) = \frac{(\sqrt{a} - \sqrt{b})^2(\sqrt{ab} - 1)}{(1 + a)(1 + b)(1 + \sqrt{ab})}
\]
and \(ab \geq \sqrt{abcd} = 1 \). To prove the second inequality, we denote \(x = \sqrt{ab} \) and \(y = \sqrt[3]{abc} \) \((x \geq y \geq 1)\), which yield \(c = y^3/x^2 \). From \(abc^2 \geq abcd = 1 \), we get \(abc \geq \sqrt{ab} \), that is, \(y^3 \geq x \). Since
\[
\frac{1}{1 + c} + \frac{2}{1 + \sqrt{ab}} - \frac{3}{1 + \sqrt[3]{abc}} = \frac{x^2}{x^2 + y^3} + \frac{2}{1 + x} - \frac{3}{1 + y}
\]
\[
= \left(\frac{x^2}{x^2 + y^3} - \frac{1}{1+y} \right) + 2 \left(\frac{1}{1+x} - \frac{1}{1+y} \right)
\]
\[
= \frac{(x-y)^2[(y-2)x + 2y^2 - y]}{(1+x)(1+y)(x^2 + y^3)},
\]

we still have to show that \((y-2)x + 2y^2 - y \geq 0\). This is clearly true for \(y \geq 2\), while for \(1 \leq y < 2\), we have
\[
(y-2)x + 2y^2 - y \geq (y-2)y^2 + 2y^2 - y = y(y-1)(y^2 - y + 1) \geq 0.
\]
The equality holds for \(a = b = c\).

\[236\]

\[\text{P 1.174. Let } a, b, c, d \text{ be positive real numbers such that } abcd = 1. \text{ Prove that}
\]
\[
\sum \frac{1}{1 + ab + bc + ca} \leq 1.
\]

\[\text{Solution.}\]

\[
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq \frac{1}{\sqrt{bc}} + \frac{1}{\sqrt{ca}} + \frac{1}{\sqrt{ab}} = \sqrt{d}(\sqrt{a} + \sqrt{b} + \sqrt{c}),
\]

we get
\[
ab + bc + ca \geq \frac{\sqrt{a} + \sqrt{b} + \sqrt{c}}{\sqrt{d}}.
\]

Therefore,
\[
\sum \frac{1}{1 + ab + bc + ca} \leq \sum \frac{\sqrt{d}}{\sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d}} = 1,
\]

which is just the required inequality. The equality occurs for \(a = b = c = d = 1\).

\[\text{P 1.175. Let } a, b, c, d \text{ be positive real numbers such that } abcd = 1. \text{ Prove that}
\]
\[
\frac{1}{(1 + a)^2} + \frac{1}{(1 + b)^2} + \frac{1}{(1 + c)^2} + \frac{1}{(1 + d)^2} \geq 1.
\]

\[(\text{Vasile Cirtoaje, 1995)}\]
First Solution. The inequality follows by summing the following inequalities (see the proof of P 1.45):

\[
\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} \geq \frac{1}{1+ab},
\]

\[
\frac{1}{(1+c)^2} + \frac{1}{(1+d)^2} \geq \frac{1}{1+cd} = \frac{ab}{1+ab}.
\]

The equality occurs for \(a = b = c = d = 1\).

Second Solution. Using the substitutions \(a = 1/x^4, b = 1/y^4, c = 1/z^4, d = 1/t^4\), where \(x, y, z, t\) are positive real numbers such that \(xyzt = 1\), the inequality becomes as follows

\[
\frac{x^6}{(x^3 + 1/x)^2} + \frac{y^6}{(y^3 + 1/y)^2} + \frac{z^6}{(z^3 + 1/z)^2} + \frac{t^6}{(t^3 + 1/t)^2} \geq 1.
\]

By the Cauchy-Schwarz inequality, we get

\[
\sum \frac{x^6}{(x^3 + 1/x)^2} \geq \frac{(\sum x^3)^2}{\sum (x^3 + 1/x)^2} = \frac{(\sum x^3)^2}{\sum x^6 + 2\sum x^2 + \sum x^2y^2z^2}.
\]

Thus, it suffices to show that

\[
2(x^3y^3 + x^3z^3 + x^3t^3 + y^3z^3 + y^3t^3 + z^3t^3) \geq 2xyzt \sum x^2 + \sum x^2y^2z^2.
\]

This is true if

\[
2(x^3y^3 + x^3z^3 + x^3t^3 + y^3z^3 + y^3t^3 + z^3t^3) \geq 3xyzt \sum x^2
\]

and

\[
2(x^3y^3 + x^3z^3 + x^3t^3 + y^3z^3 + y^3t^3 + z^3t^3) \geq 3 \sum x^2y^2z^2.
\]

Write these inequalities as

\[
\sum x^3(y^3 + z^3 + t^3 - 3yzt) \geq 0
\]

and

\[
\sum (x^3y^3 + y^3z^3 + z^3x^3 - 3x^2y^2z^2) \geq 0,
\]

respectively. By the AM-GM inequality, we have

\[
y^3 + z^3 + t^3 \geq 3yzt\quad \text{and}\quad x^3y^3 + y^3z^3 + z^3x^3 \geq 3x^2y^2z^2.
\]

Thus the conclusion follows.

Third Solution. Using the substitutions \(a = yz/x^2, b = zt/y^2, c = tx/z^2, d = xy/t^2\), where \(x, y, z, t\) are positive real numbers, the inequality becomes

\[
\frac{x^4}{(x^2 + yz)^2} + \frac{y^4}{(y^2 + zt)^2} + \frac{z^4}{(z^2 + tx)^2} + \frac{t^4}{(t^2 + xy)^2} \geq 1.
\]
Using the Cauchy-Schwarz inequality two times, we deduce
\[\frac{x^4}{(x^2 + yz)^2} + \frac{z^4}{(z^2 + tx)^2} \geq \frac{x^4}{(x^2 + y^2)(x^2 + z^2)} + \frac{z^4}{(z^2 + t^2)(z^2 + x^2)} \]
and hence
\[\frac{x^4}{(x^2 + y^2)^2} + \frac{z^4}{(z^2 + t^2)^2} \geq \frac{x^2 + z^2}{x^2 + y^2 + z^2 + t^2}. \]

Adding this to the similar inequality
\[\frac{y^4}{(y^2 + zt)^2} + \frac{t^4}{(t^2 + xy)^2} \geq \frac{y^2 + t^2}{x^2 + y^2 + z^2 + t^2}, \]
we get the required inequality.

Fourth Solution. Using the substitutions \(a = x/y, \ b = y/z, \ c = z/t, \ d = t/x, \) where \(x, y, z, t \) are positive real numbers, the inequality can be written as
\[\frac{y^2}{(x + y)^2} + \frac{z^2}{(y + z)^2} + \frac{t^2}{(z + t)^2} + \frac{x^2}{(t + x)^2} \geq 1. \]

By the Cauchy-Schwarz inequality and the AM-GM inequality, we get
\[\sum \frac{y^2}{(x + y)^2} \geq \frac{[\sum y(y + z)]^2}{\sum (x + y)^2(y + z)^2} = \frac{[(x + y)^2 + (y + z)^2 + (z + t)^2 + (t + x)^2]^2}{4[(x + y)^2 + (y + z)^2 + (z + t)^2 + (t + x)^2]} \geq 1. \]

Remark. The following generalization holds true (Vasile Cîrtoaje, 2005):
- Let \(a_1, a_2, \ldots, a_n \) be positive real numbers such that \(a_1 a_2 \cdots a_n = 1. \) If \(k \geq \sqrt{n} - 1, \) then
\[\frac{1}{(1 + ka_1)^2} + \frac{1}{(1 + ka_2)^2} + \cdots + \frac{1}{(1 + ka_n)^2} \geq \frac{n}{(1 + k)^2}. \]

\[\square \]

P 1.176. Let \(a, b, c, d \neq \frac{1}{3} \) be positive real numbers such that \(abcd = 1. \) Prove that
\[\frac{1}{(3a - 1)^2} + \frac{1}{(3b - 1)^2} + \frac{1}{(3c - 1)^2} + \frac{1}{(3d - 1)^2} \geq 1. \]

(Vasile Cîrtoaje, 2006)
First Solution. It suffices to show that

\[
\frac{1}{(3a - 1)^2} \geq \frac{a^{-3}}{a^{-3} + b^{-3} + c^{-3} + d^{-3}}.
\]

This inequality is equivalent to

\[
6a^{-2} + b^{-3} + c^{-3} + d^{-3} \geq 9a^{-1},
\]

which follows from the AM-GM inequality, as follows

\[
6a^{-2} + b^{-3} + c^{-3} + d^{-3} \geq 9\sqrt[9]{a^{-12}b^{-3}c^{-3}d^{-3}} = 9a^{-1}.
\]

The equality occurs for \(a = b = c = d = 1\).

Second Solution. Let \(a \leq b \leq c \leq d\). If \(a < 1/3\), then

\[
\frac{1}{(3a - 1)^2} > 1,
\]

and the desired inequality is clearly true. Otherwise, if \(1/3 < a \leq b \leq c \leq d\), we have

\[
4a^3 - (3a - 1)^2 = (a - 1)^2(4a - 1) \geq 0.
\]

Therefore, using this result and the AM-GM inequality, we get

\[
\sum \frac{1}{(3a - 1)^2} \geq \frac{1}{4} \sum \frac{1}{a^3} \geq \sqrt[4]{\frac{1}{a^3b^3c^3d^3}} = 1.
\]

Third Solution. We have

\[
\frac{1}{(3a - 1)^2} - \frac{1}{(a^3 + 1)^2} = \frac{a(a - 1)^2(a + 2)(a^2 + 3)}{(3a - 1)^2(a^3 + 1)^2} \geq 0.
\]

Therefore,

\[
\sum \frac{1}{(3a - 1)^2} \geq \sum \frac{1}{(a^3 + 1)^2},
\]

and it suffices to prove that

\[
\sum \frac{1}{(a^3 + 1)^2} \geq 1.
\]

This inequality is an immediate consequence of the inequality in P 1.175.

\[
\Box
\]
P 1.177. Let \(a, b, c, d\) be positive real numbers such that \(abcd = 1\). Prove that

\[
\frac{1}{1 + a + a^2 + a^3} + \frac{1}{1 + b + b^2 + b^3} + \frac{1}{1 + c + c^2 + c^3} + \frac{1}{1 + d + d^2 + d^3} \geq 1.
\]

(Vasile Cîrtoaje, 1999)

First Solution. We get the desired inequality by summing the inequalities

\[
\frac{1}{1 + a + a^2 + a^3} \geq \frac{1}{1 + (ab)^{3/2}},
\]

\[
\frac{1}{1 + c + c^2 + c^3} \geq \frac{1}{1 + (cd)^{3/2}}.
\]

Thus, it suffices to show that

\[
\frac{1}{1 + x^2 + x^4 + x^6} + \frac{1}{1 + y^2 + y^4 + y^6} \geq \frac{1}{1 + x^3y^3},
\]

where \(x\) and \(y\) are positive real numbers. Putting \(p = xy\) and \(s = x^2 + xy + y^2\), this inequality becomes

\[
p^3(x^6 + y^6) + p^2(p - 1)(x^4 + y^4) - p^2(p^2 - p + 1)(x^2 + y^2) - p^4 - 2p^3 - p^2 + 1 \geq 0,
\]

\[
p^3(x^3 - y^3)^2 + p^2(p - 1)(x^2 - y^2)^2 - p^2(p^2 - p + 1)(x - y)^2 - p^6 - p^4 - p^2 + 1 \geq 0.
\]

\[
p^3s^2(x - y)^2 + p^2(p - 1)(s + p)^2(x - y)^2 - p^2(p^2 - p + 1)(x - y)^2 - p^6 - p^4 - p^2 + 1,
\]

\[
p^2(s + 1)(ps - 1)(x - y)^2 + (p^2 - 1)(p^4 - 1) \geq 0.
\]

If \(ps - 1 \geq 0\), then this inequality is clearly true. Consider further that \(ps < 1\). From \(ps < 1\) and \(s \geq 3p\), we get \(p^2 < 1/3\). Write the desired inequality in the form

\[
(1 - p^2)(1 - p^4) \geq p^2(1 + s)(1 - ps)(x - y)^2.
\]

Since

\[
p(x - y)^2 = p(s - 3p) < 1 - 3p^2 < 1 - p^2,
\]

it suffices to show that

\[
1 - p^4 \geq p(1 + s)(1 - ps).
\]

Indeed,

\[
4p(1 + s)(1 - ps) \leq [p(1 + s) + (1 - ps)]^2 = (1 + p)^2 < 2(1 + p^2) < 4(1 - p^4).
\]

The equality occurs for \(a = b = c = d = 1\).

Second Solution. Assume that \(a \geq b \geq c \geq d\), and write the inequality as

\[
\sum_{k=1}^{4} \frac{1}{1 + a} \geq 1.
\]
Since
\[
\frac{1}{1+a} \leq \frac{1}{1+b} \leq \frac{1}{1+c}, \quad \frac{1}{1+a^2} \leq \frac{1}{1+b^2} \leq \frac{1}{1+c^2},
\]
by Chebyshev's inequality, it suffices to prove that
\[
\frac{1}{3} \left(\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \right) \left(\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \right) + \frac{1}{1+(d)(1+d^2)} \geq 1.
\]
In addition, from the inequality in P 1.173, we have
\[
\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \geq \frac{3\sqrt[3]{abc}}{1 + \sqrt[3]{abc}} = \frac{3\sqrt[3]{d}}{\sqrt[3]{d} + 1}
\]
and
\[
\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \geq \frac{3\sqrt[3]{a^2b^2c^2}}{1 + \sqrt[3]{a^2b^2c^2}} = \frac{3\sqrt[3]{d^2}}{\sqrt[3]{d^2} + 1}.
\]
Thus, it suffices to prove that
\[
\frac{3d}{(1 + \sqrt[3]{d})(1 + \sqrt[3]{d^2})} + \frac{1}{(1+d)(1+d^2)} \geq 1.
\]
Putting \(x = \sqrt[3]{d} \), this inequality becomes as follows
\[
\frac{3x^3}{(1 + x)(1 + x^2)} + \frac{1}{(1 + x^3)(1 + x^6)} \geq 1,
\]
\[
3x^3(1-x+x^2)(1-x^2+x^4) + 1 \geq (1+x^3)(1+x^6),
\]
\[
x^3(2-3x+2x^3-3x^5+2x^6) \geq 0,
\]
\[
x^3(1-x)^2(2+x+x^3+2x^4) \geq 0.
\]

Remark. The following generalization holds true (Vasile Cirtoaje, 2004):

- If \(a_1, a_2, \ldots, a_n \) are positive real numbers such that \(a_1a_2\cdots a_n = 1 \), then
\[
\frac{1}{1+a_1 + \cdots + a_1^{n-1}} + \frac{1}{1+a_2 + \cdots + a_2^{n-1}} + \cdots + \frac{1}{1+a_n + \cdots + a_n^{n-1}} \geq 1.
\]

\[
\P 1.178. \text{Let } a, b, c, d \text{ be positive real numbers such that } abcd = 1. \text{ Prove that}
\[
\frac{1}{1+a + 2a^2} + \frac{1}{1+b + 2b^2} + \frac{1}{1+c + 2c^2} + \frac{1}{1+d + 2d^2} \geq 1.
\]
\(\text{(Vasile Cirtoaje, 2006)} \)
Solution. We will show that
\[
\frac{1}{1 + a + 2a^2} \geq \frac{1}{1 + a^k + a^{2k} + a^{3k}},
\]
where \(k = 5/6 \). Then, it suffices to show that
\[
\sum \frac{1}{1 + a^k + a^{2k} + a^{3k}} \geq 1,
\]
which immediately follows from the inequality in P 1.177. Setting \(a = x^6 \), \(x > 0 \), the claimed inequality can be written as
\[
\frac{1}{2x^{12} + x^6 + 1} \geq \frac{1}{1 + x^5 + x^{10} + x^{15}},
\]
which is equivalent to
\[
x^{10} + x^5 + 1 \geq 2x^7 + x.
\]
We can prove it by summing the AM-GM inequalities
\[
x^5 + 4 \geq 5x
\]
and
\[
5x^{10} + 4x^5 + 1 \geq 10x^7.
\]
This completes the proof. The equality occurs for \(a = b = c = d = 1 \).

Remark. The inequalities in P 1.175, P 1.177 and P 1.178 are particular cases of the following more general inequality (Vasile Cîrtoaje, 2009):

- Let \(a_1, a_2, \ldots, a_n (n \geq 4) \) be positive real numbers such that \(a_1a_2 \cdots a_n = 1 \). If \(p, q, r \) are nonnegative real numbers satisfying \(p + q + r = n - 1 \), then
\[
\sum_{i=1}^{i=n} \frac{1}{1 + pa_i + qa_i^2 + ra_i^3} \geq 1.
\]

\[\square \]

P 1.179. Let \(a, b, c, d \) be positive real numbers such that \(abcd = 1 \). Prove that
\[
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{9}{a + b + c + d} \geq \frac{25}{4}.
\]
Solution (by Vo Quoc Ba Can). Replacing a, b, c, d by a^4, b^4, c^4, d^4, respectively, the inequality becomes as follows:

$$
\frac{1}{a^4} + \frac{1}{b^4} + \frac{1}{c^4} + \frac{1}{d^4} + \frac{9}{a^4 + b^4 + c^4 + d^4} \geq \frac{25}{4abcd},
$$

$$
\frac{1}{a^4} + \frac{1}{b^4} + \frac{1}{c^4} + \frac{1}{d^4} - \frac{4}{abcd} \geq \frac{9}{a^4 + b^4 + c^4 + d^4},
$$

$$
\frac{1}{a^4} + \frac{1}{b^4} + \frac{1}{c^4} + \frac{1}{d^4} - \frac{4}{abcd} \geq \frac{9(a^4 + b^4 + c^4 + d^4 - 4abcd)}{4abcd(a^4 + b^4 + c^4 + d^4)}.
$$

Using the identities

$$
a^4 + b^4 + c^4 + d^4 - 4abcd = (a^2 - b^2)^2 + (c^2 - d^2)^2 + 2(ab - cd)^2,
$$

$$
\frac{1}{a^4} + \frac{1}{b^4} + \frac{1}{c^4} + \frac{1}{d^4} - \frac{4}{abcd} = \frac{(a^2 - b^2)^2}{a^4b^4} + \frac{(c^2 - d^2)^2}{c^4d^4} + \frac{2(ab - cd)^2}{a^2b^2c^2d^2},
$$

the inequality can be written as

$$
\frac{(a^2 - b^2)^2}{a^4b^4} + \frac{(c^2 - d^2)^2}{c^4d^4} + \frac{2(ab - cd)^2}{a^2b^2c^2d^2} \geq \frac{9[(a^2 - b^2)^2 + (c^2 - d^2)^2 + 2(ab - cd)^2]}{4abcd(a^4 + b^4 + c^4 + d^4)},
$$

$$
(a^2 - b^2)^2 \left[\frac{4cd(a^4 + b^4 + c^4 + d^4)}{a^3b^3} - 9 \right] + (c^2 - d^2)^2 \left[\frac{4ab(a^4 + b^4 + c^4 + d^4)}{c^3d^3} - 9 \right] + 2(ab - cd)^2 \left[\frac{4(a^4 + b^4 + c^4 + d^4)}{abcd} - 9 \right] \geq 0.
$$

By the AM-GM inequality, we have

$$
a^4 + b^4 + c^4 + d^4 \geq 4abcd.
$$

Therefore, it suffices to show that

$$
(a^2 - b^2)^2 \left[\frac{4cd(a^4 + b^4 + c^4 + d^4)}{a^3b^3} - 9 \right] + (c^2 - d^2)^2 \left[\frac{4ab(a^4 + b^4 + c^4 + d^4)}{c^3d^3} - 9 \right] \geq 0.
$$

Without loss of generality, assume that $a \geq c \geq d \geq b$. Since

$$
(a^2 - b^2)^2 \geq (c^2 - d^2)^2
$$

and

$$
\frac{4cd(a^4 + b^4 + c^4 + d^4)}{a^3b^3} \geq \frac{4(a^4 + b^4 + c^4 + d^4)}{a^3b} \geq \frac{4(a^4 + 3b^4)}{a^3b} > 9,
$$

it is enough to prove that

$$
\left[\frac{4cd(a^4 + b^4 + c^4 + d^4)}{a^3b^3} - 9 \right] + \left[\frac{4ab(a^4 + b^4 + c^4 + d^4)}{c^3d^3} - 9 \right] \geq 0,
$$
which is equivalent to
\[
2(a^4 + b^4 + c^4 + d^4) \left(\frac{cd}{a^3b^3} + \frac{ab}{c^3d^3} \right) \geq 9.
\]
Indeed, by the AM-GM inequality,
\[
2(a^4 + b^4 + c^4 + d^4) \left(\frac{cd}{a^3b^3} + \frac{ab}{c^3d^3} \right) \geq 8abcd \frac{2}{abcd} = 16 > 9.
\]
The equality occurs for \(a = b = c = d = 1\).

\[\Box\]

P 1.180. If \(a, b, c, d\) are real numbers such that \(a + b + c + d = 0\), then
\[
\frac{(a - 1)^2}{3a^2 + 1} + \frac{(b - 1)^2}{3b^2 + 1} + \frac{(c - 1)^2}{3c^2 + 1} + \frac{(d - 1)^2}{3d^2 + 1} \leq 4.
\]

Solution. Since
\[
4 - 3\frac{(a - 1)^2}{3a^2 + 1} = \frac{(3a + 1)^2}{3a^2 + 1},
\]
we can write the inequality as
\[
\sum \frac{(3a + 1)^2}{3a^2 + 1} \geq 4.
\]
On the other hand, since
\[
4a^2 = 3a^2 + (b + c + d)^2 \leq 3a^2 + 3(b^2 + c^2 + d^2) = 3(a^2 + b^2 + c^2 + d^2),
\]
\[
3a^2 + 1 \leq \frac{9}{4}(a^2 + b^2 + c^2 + d^2) + 1 = \frac{9(a^2 + b^2 + c^2 + d^2) + 4}{4},
\]
we have
\[
\sum \frac{(3a + 1)^2}{3a^2 + 1} \geq \frac{4\sum (3a + 1)^2}{9(a^2 + b^2 + c^2 + d^2) + 4} = 4.
\]
The equality holds for \(a = b = c = d = 0\), and also for \(a = 1\) and \(b = c = d = -1/3\) (or any cyclic permutation).

Remark. The following generalization is also true.
- If \(a_1, a_2, \ldots, a_n\) are real numbers such that \(a_1 + a_2 + \cdots + a_n = 0\), then
\[
\frac{(a_1 - 1)^2}{(n - 1)a_1^2 + 1} + \frac{(a_2 - 1)^2}{(n - 1)a_2^2 + 1} + \cdots + \frac{(a_n - 1)^2}{(n - 1)a_n^2 + 1} \leq n,
\]
with equality for \(a_1 = a_2 = \cdots = a_n = 0\), and also for \(a_1 = 1\) and \(a_2 = a_3 = \cdots = a_n = -1/(n - 1)\) (or any cyclic permutation).

\[\Box\]
If \(a, b, c, d \geq -5\) such that \(a + b + c + d = 4\), then
\[
\frac{1-a}{(1+a)^2} + \frac{1-b}{(1+b)^2} + \frac{1-c}{(1+c)^2} + \frac{1-d}{(1+d)^2} \geq 0.
\]

Solution. Assume that \(a \leq b \leq c \leq d\). We show first that \(x \in [-5, -1) \cup (-1, \infty)\) involves
\[
\frac{1-x}{(1+x)^2} \geq -\frac{1}{8},
\]
and \(x \in [-5, -1) \cup (-1, 1/3]\) involves
\[
\frac{1-x}{(1+x)^2} \geq \frac{3}{8}.
\]
Indeed, we have
\[
\frac{1-x}{(1+x)^2} + \frac{1}{8} = \frac{(x-3)^2}{8(1+x)^2} \geq 0
\]
and
\[
\frac{1-x}{(1+x)^2} - \frac{3}{8} = \frac{(5+x)(1-3x)}{8(1+x)^2} \geq 0.
\]
Then, if \(a \leq 1/3\), then
\[
\frac{1-a}{(1+a)^2} + \frac{1-b}{(1+b)^2} + \frac{1-c}{(1+c)^2} + \frac{1-d}{(1+d)^2} \geq \frac{3}{8} - \frac{1}{8} - \frac{1}{8} - \frac{1}{8} = 0.
\]
Assume now that \(1/3 \leq a \leq b \leq c \leq d\). Since
\[
1-a \geq 1-b \geq 1-c \geq 1-d
\]
and
\[
\frac{1}{(1+a)^2} \geq \frac{1}{(1+b)^2} \geq \frac{1}{(1+c)^2} \geq \frac{1}{(1+d)^2},
\]
by Chebyshev’s inequality, we have
\[
\frac{1-a}{(1+a)^2} + \frac{1-b}{(1+b)^2} + \frac{1-c}{(1+c)^2} + \frac{1-d}{(1+d)^2} \geq \frac{1}{4} \left[\sum (1-a) \right] \left[\sum \frac{1}{(1+a)^2} \right] = 0.
\]
The equality holds for \(a = b = c = d = 1\), and also for \(a = -5\) and \(b = c = d = 3\) (or any cyclic permutation).
P 1.182. Let a_1, a_2, \ldots, a_n be positive real numbers such that $a_1 + a_2 + \cdots + a_n = n$. Prove that

$$\sum \frac{1}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2} \leq \frac{1}{2}.$$

\textit{(Vasile Cîrtoaje, 2008)}

\textbf{First Solution.} By the Cauchy-Schwarz inequality, we have

$$\sum \frac{n^2}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2} = \sum \frac{(a_1 + a_2 + \cdots + a_n)^2}{2a_1^2 + (a_1 + a_2)^2 + \cdots + (a_1 + a_2 + \cdots + a_n)} \leq \sum \left(\frac{1}{2n} \frac{a_2^2}{a_1^2 + a_2^2} + \cdots + \frac{a_n^2}{a_1^2 + a_n^2} \right)$$

$$= \frac{n}{2} + \frac{n(n-1)}{2} = \frac{n^2}{2},$$

from which the conclusion follows. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

\textbf{Second Solution.} Write the inequality as

$$\sum \frac{a_1^2 + a_2^2 + \cdots + a_n^2}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2} \leq \frac{a_1^2 + a_2^2 + \cdots + a_n^2}{2}.$$

Since

$$\frac{a_1^2 + a_2^2 + \cdots + a_n^2}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2} = 1 - \frac{na_1^2}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2},$$

we need to prove that

$$\sum \frac{a_1^2}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2} + \frac{a_1^2 + a_2^2 + \cdots + a_n^2}{2n} \geq 1.$$

By the Cauchy-Schwarz inequality, we have

$$\sum \frac{a_1^2}{(n+1)a_1^2 + a_2^2 + \cdots + a_n^2} \geq \frac{(a_1 + a_2 + \cdots + a_n)^2}{\sum [(n+1)a_1^2 + a_2^2 + \cdots + a_n^2]}$$

$$= \frac{n}{2(a_1^2 + a_2^2 + \cdots + a_n^2)}.$$

Then, it suffices to prove that

$$\frac{n}{a_1^2 + a_2^2 + \cdots + a_n^2} + \frac{a_1^2 + a_2^2 + \cdots + a_n^2}{n} \geq 2,$$

which follows immediately from the AM-GM inequality.
P 1.183. Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = 0$. Prove that

$$\frac{(a_1 + 1)^2}{a_1^2 + n - 1} + \frac{(a_2 + 1)^2}{a_2^2 + n - 1} + \cdots + \frac{(a_n + 1)^2}{a_n^2 + n - 1} \geq \frac{n}{n - 1}.$$

(Vasile Cirtoaje, 2010)

Solution. Without loss of generality, assume that $a_n^2 = \max\{a_1^2, a_2^2, \cdots, a_n^2\}$. Since

$$\frac{(a_n + 1)^2}{a_n^2 + n - 1} = \frac{n}{n - 1} - \frac{(n - 1 - a_n)^2}{(n - 1)(a_n^2 + n - 1)},$$

we can write the inequality as

$$\sum_{i=1}^{n-1} \frac{(a_i + 1)^2}{a_i^2 + n - 1} \geq \frac{(n - 1 - a_n)^2}{(n - 1)(a_n^2 + n - 1)}.$$

From the Cauchy-Schwarz inequality

$$\left[\sum_{i=1}^{n-1} (a_i^2 + n - 1) \right] \left[\sum_{i=1}^{n-1} \frac{(a_i + 1)^2}{a_i^2 + n - 1} \right] \geq \left[\sum_{i=1}^{n-1} (a_i + 1) \right]^2,$$

we get

$$\sum_{i=1}^{n-1} \frac{(a_i + 1)^2}{a_i^2 + n - 1} \geq \frac{(n - 1 - a_n)^2}{\sum_{i=1}^{n-1} a_i^2 + (n - 1)^2}.$$

Thus, it suffices to show that

$$\sum_{i=1}^{n-1} a_i^2 + (n - 1)^2 \leq (n - 1)(a_n^2 + n - 1),$$

which is clearly true. The proof is completed. The equality holds for $\frac{-a_1}{n - 1} = a_2 = a_3 = \cdots = a_n$ (or any cyclic permutation).

\[\square\]

P 1.184. Let a_1, a_2, \ldots, a_n be positive real numbers such that $a_1 a_2 \cdots a_n = 1$. Prove that

$$\frac{1}{1 + (n - 1)a_1} + \frac{1}{1 + (n - 1)a_2} + \cdots + \frac{1}{1 + (n - 1)a_n} \geq 1.$$

(Vasile Cirtoaje, 1991)
First Solution. Let $k = (n - 1)/n$. We can get the required inequality by summing the inequalities below for $i = 1, 2, \cdots, n$:

$$\frac{1}{1 + (n - 1)a_i} \geq \frac{a_i^{-k}}{a_1^{-k} + a_2^{-k} + \cdots + a_n^{-k}}.$$

This inequality is equivalent to

$$a_1^{-k} + \cdots + a_i^{-k} + a_{i+1}^{-k} + \cdots + a_n^{-k} \geq (n - 1)a_i^{-k},$$

which follows from the AM-GM inequality. The equality holds for $a_1 = a_2 = \cdots = a_n = 1$.

Second Solution. Using the substitutions $a_i = 1/x_i$ for all i, the inequality becomes

$$\frac{x_1}{x_1 + n - 1} + \frac{x_2}{x_2 + n - 1} + \cdots + \frac{x_n}{x_n + n - 1} \geq 1,$$

where x_1, x_2, \cdots, x_n are positive real numbers such that $x_1 x_2 \cdots x_n = 1$. By the Cauchy-Schwarz inequality, we have

$$\sum x_i / (x_i + n - 1) \geq (\sum \sqrt{x_i})^2 / \sum (x_i + n - 1).$$

Thus, we still have to prove that

$$(\sum \sqrt{x_i})^2 \geq \sum x_1 + n(n - 1),$$

which reduces to

$$\sum_{1 \leq i < j \leq n} \sqrt{x_i x_j} \geq \frac{n(n - 1)}{2}.$$

Since $x_1 x_2 \cdots x_n = 1$, this inequality follows from the AM-GM inequality.

Third Solution. For the sake of contradiction, assume that the required inequality is not true. Then, it suffices to show that the hypothesis $a_1 a_2 \cdots a_n = 1$ does not hold. More precisely, we will prove that

$$\frac{1}{1 + (n - 1)a_1} + \frac{1}{1 + (n - 1)a_2} + \cdots + \frac{1}{1 + (n - 1)a_n} < 1$$

involves $a_1 a_2 \cdots a_n > 1$. Let $x_i = \frac{1}{1 + (n - 1)a_i}$, $0 < x_i < 1$, for $i = 1, 2, \cdots, n$. Since $a_i = 1 - x_i (n - 1)x_i$ for all i, we need to show that

$$x_1 + x_2 + \cdots + x_n < 1.$$
implies
\[(1 - x_1)(1 - x_2) \cdots (1 - x_n) > (n - 1)^n x_1 x_2 \cdots x_n.\]

Using the AM-GM inequality, we have
\[1 - x_i > \sum_{k \neq i} x_k \geq (n - 1) x_i \sqrt[n-1]{\prod_{k \neq i} x_k}.\]

Multiplying the inequalities
\[1 - x_i > (n - 1) x_i \sqrt[n-1]{\prod_{k \neq i} x_k}.\]

for \(i = 1, 2, \cdots, n\), the conclusion follows.

Remark. The inequality in P 1.184 is a particular case of the following more general results (Vasile Cîrtoaje, 2005):

- Let \(a_1, a_2, \ldots, a_n\) be positive real numbers such that \(a_1 a_2 \cdots a_n = 1\). If \(0 < k \leq n - 1\) and \(p \geq n^{1/k} - 1\), then
 \[\frac{1}{(1 + pa_1)^k} + \frac{1}{(1 + pa_2)^k} + \cdots + \frac{1}{(1 + pa_n)^k} \geq \frac{n}{(1 + p)^k}.\]

- Let \(a_1, a_2, \ldots, a_n\) be positive real numbers such that \(a_1 a_2 \cdots a_n = 1\). If \(k \geq \frac{1}{n - 1}\) and
 \(0 < p \leq \left(\frac{n}{n - 1}\right)^{1/k} - 1\), then
 \[\frac{1}{(1 + pa_1)^k} + \frac{1}{(1 + pa_2)^k} + \cdots + \frac{1}{(1 + pa_n)^k} \leq \frac{n}{(1 + p)^k}.\]

\(\Box\)

P 1.185. Let \(a_1, a_2, \ldots, a_n\) be positive real numbers such that \(a_1 a_2 \cdots a_n = 1\). Prove that
\[\frac{1}{1 - a_1 + na_1^2} + \frac{1}{1 - a_2 + na_2^2} + \cdots + \frac{1}{1 - a_n + na_n^2} \geq 1.\]

(Vasile Cîrtoaje, 2009)

Solution. First, we show that
\[\frac{1}{1 - x + nx^2} \geq \frac{1}{1 + (n - 1)x^k},\]
where \(x > 0 \) and \(k = 2 + \frac{1}{n-1} \). Write the inequality as
\[
(n-1)x^k + x \geq nx^2.
\]
We can get this inequality using the AM-GM inequality as follows
\[
(n-1)x^k + x \geq n\sqrt[k]{x^{(n-1)k}x} = nx^2.
\]
Thus, it suffices to show that
\[
\frac{1}{1 + (n-1)a_1^k} + \frac{1}{1 + (n-1)a_2^k} + \cdots + \frac{1}{1 + (n-1)a_n^k} \geq 1,
\]
which follows immediately from the inequality in the preceding P 1.184. The equality holds for \(a_1 = a_2 = \cdots = a_n = 1 \).

Remark 1. Similarly, we can prove the following more general statement.

- Let \(a_1, a_2, \ldots, a_n \) be positive real numbers such that \(a_1a_2\cdots a_n = 1 \). If \(p \) and \(q \) are real numbers such that \(p + q = n - 1 \) and \(n - 1 \leq q \leq (\sqrt{n} + 1)^2 \), then
\[
\frac{1}{1 + pa_1 + qa_1^2} + \frac{1}{1 + pa_2 + qa_2^2} + \cdots + \frac{1}{1 + pa_n + qa_n^2} \geq 1.
\]

Remark 2. We can extend the inequality in Remark 1 as follows (Vasile Cîrtoaje, 2009).

- Let \(a_1, a_2, \ldots, a_n \) be positive real numbers such that \(a_1a_2\cdots a_n = 1 \). If \(p \) and \(q \) are real numbers such that \(p + q = n - 1 \) and \(0 \leq q \leq (\sqrt{n} + 1)^2 \), then
\[
\frac{1}{1 + pa_1 + qa_1^2} + \frac{1}{1 + pa_2 + qa_2^2} + \cdots + \frac{1}{1 + pa_n + qa_n^2} \geq 1.
\]

\(\square \)

P 1.186. Let \(a_1, a_2, \ldots, a_n \) be positive real numbers such that
\[
a_1, a_2, \ldots, a_n \geq \frac{k(n-k-1)}{kn-k-1}, \quad k > 1
\]
and
\[
a_1a_2\cdots a_n = 1.
\]
Prove that
\[
\frac{1}{a_1 + k} + \frac{1}{a_2 + k} + \cdots + \frac{1}{a_n + k} \leq \frac{n}{1+k}.
\]

(Vasile Cîrtoaje, 2005)
Solution. We use the induction on \(n \). Let

\[
E_n(a_1, a_2, \ldots, a_n) = \frac{1}{a_1 + k} + \frac{1}{a_2 + k} + \cdots + \frac{1}{a_n + k} - \frac{n}{1 + k}.
\]

For \(n = 2 \), we have

\[
E_2(a_1, a_2) = \frac{(1-k)(\sqrt{a_1} - \sqrt{a_2})^2}{(1+k)(a_1+k)(a_2+k)} \leq 0.
\]

Assume that the inequality is true for \(n-1 \) numbers \((n \geq 3) \), and prove that \(E_n(a_1, a_2, \ldots, a_n) \geq 0 \) for \(a_1 a_2 \cdots a_n = 1 \) and \(a_1, a_2, \ldots, a_n \geq p_n \), where

\[
p_n = \frac{k(n-k-1)}{kn-k-1}.
\]

Due to symmetry, we may assume that \(a_1 \geq 1 \) and \(a_2 \leq 1 \). There are two cases to consider.

Case 1: \(a_1 a_2 \leq k^2 \). Since \(a_1 a_2 \geq a_2 \) and \(p_{n-1} < p_n \), from \(a_1, a_2, \ldots, a_n \geq p_n \) it follows that

\[
a_1 a_2, a_3, \ldots, a_n > p_{n-1}.
\]

Then, by the inductive hypothesis, we have \(E_{n-1}(a_1 a_2, a_3, \ldots, a_n) \leq 0 \), and it suffices to show that

\[
E_n(a_1, a_2, \ldots, a_n) \leq E_{n-1}(a_1 a_2, a_3, \ldots, a_n).
\]

This is equivalent to

\[
\frac{1}{a_1 + k} + \frac{1}{a_2 + k} - \frac{1}{a_1 a_2 + k} - \frac{1}{1 + k} \leq 0,
\]

which reduces to the obvious inequality

\[
(a_1 - 1)(1 - a_2)(a_1 a_2 - k^2) \leq 0.
\]

Case 2: \(a_1 a_2 \geq k^2 \). Since

\[
\frac{1}{a_1 + k} + \frac{1}{a_2 + k} = \frac{a_1 + a_2 + 2k}{a_1 a_2 + k(a_1 + a_2) + k^2} \leq \frac{a_1 + a_2 + 2k}{k^2 + k(a_1 + a_2) + k^2} = \frac{1}{k}
\]

and

\[
\frac{1}{a_3 + k} + \cdots + \frac{1}{a_n + k} \leq \frac{n-2}{p_n + k} = \frac{kn - k - 1}{k(k+1)}
\]

we have

\[
E_n(a_1, a_2, \ldots, a_n) \leq \frac{1}{k} + \frac{kn - k - 1}{k(k+1)} - \frac{n}{1 + k} = 0.
\]

Thus, the proof is completed. The equality holds for \(a_1 = a_2 = \cdots = a_n = 1 \).
Remark. For \(k = n - 1 \), we get the inequality in P 1.184. Also, for \(k \to \infty \), we get the known inequalities

\[
1 < \frac{1}{1 + a_1} + \frac{1}{1 + a_2} + \cdots + \frac{1}{1 + a_n} < n - 1,
\]

which holds for all positive numbers \(a_1, a_2, \ldots, a_n \) satisfying \(a_1 a_2 \cdots a_n = 1 \).

\[\square\]

P 1.187. Let \(a_1, a_2, \ldots, a_n \) be positive real numbers such that

\[
a_1 \geq 1 \geq a_2 \geq \cdots \geq a_n, \quad a_1 a_2 \cdots a_n = 1.
\]

Prove that

\[
\frac{1 - a_1}{3 + a_1^2} + \frac{1 - a_2}{3 + a_2^2} + \cdots + \frac{1 - a_n}{3 + a_n^2} \geq 0.
\]

(Vasile Cirtoaje, 2013)

Solution. For \(n = 2 \), we have

\[
\frac{1 - a_1}{3 + a_1^2} + \frac{1 - a_2}{3 + a_2^2} = \frac{(a_1 - 1)^4}{(3 + a_1^2)(3a_1^2 + 1)} \geq 0.
\]

For \(n \geq 3 \), we will use the induction method and the inequality

\[
\frac{1 - x}{3 + x^2} + \frac{1 - y}{3 + y^2} \geq \frac{1 - xy}{3 + x^2y^2},
\]

which holds for all \(x, y \in [0, 1] \). Indeed, we can write this inequality as

\[
(1 - x)(1 - y)(3 + xy)(3 - xy - x^2y - xy^2) \geq 0,
\]

which is obviously true. Based on the inequality

\[
\frac{1 - a_{n-1}}{3 + a_{n-1}^2} + \frac{1 - a_n}{3 + a_n^2} \geq \frac{1 - a_{n-1}a_n}{3 + a_{n-1}^2a_n^2},
\]

it suffices to show that

\[
\frac{1 - a_1}{3 + a_1^2} + \cdots + \frac{1 - a_{n-2}}{3 + a_{n-2}^2} + \frac{1 - a_{n-1}a_n}{3 + a_{n-1}^2a_n^2} \geq 0.
\]

Since

\[
a_1 \geq 1 \geq a_2 \geq \cdots \geq a_{n-1} \geq a_n,
\]

this inequality follows from the hypothesis induction. Thus, the proof is completed. The equality holds for \(a_1 = a_2 = \cdots = a_n = 1 \).

\[\square\]
Symmetric Rational Inequalities

P 1.188. If \(a_1, a_2, \ldots, a_n \geq 0 \), then
\[
\frac{1}{1 + na_1} + \frac{1}{1 + na_2} + \cdots + \frac{1}{1 + na_n} \geq \frac{n}{n + a_1 a_2 \cdots a_n}.
\]

(Vasile Cîrtoaje, 2013)

Solution. If one of \(a_1, a_2, \ldots, a_n \) is zero, the inequality is obvious. Consider further that \(a_1, a_2, \ldots, a_n > 0 \) and let
\[
r = \sqrt[1+n]{a_1 a_2 \cdots a_n}.
\]

By the Cauchy-Schwarz inequality, we have
\[
\sum \frac{1}{1 + na_1} \geq \frac{(\sum \sqrt[a_2 a_3 \cdots a_n]{})^2}{\sum (1 + na_1) a_2 a_3 \cdots a_n} = \frac{(\sum \sqrt[a_2 a_3 \cdots a_n]{})^2}{\sum a_2 a_3 \cdots a_n + n^2 r^n}.
\]

Therefore, it suffices to show that
\[
(n + r^n)(\sum \sqrt[a_2 a_3 \cdots a_n]{})^2 \geq n \sum a_2 a_3 \cdots a_n + n^3 r^n.
\]

By the AM-GM inequality, we have
\[
(\sum \sqrt[a_2 a_3 \cdots a_n]{})^2 \geq \sum a_2 a_3 \cdots a_n + n(n-1)r^{n-1}.
\]

Thus, it is enough to prove that
\[
(n + r^n)\left[\sum a_2 a_3 \cdots a_n + n(n-1)r^{n-1}\right] \geq n \sum a_2 a_3 \cdots a_n + n^3 r^n,
\]

which is equivalent to
\[
r^n \sum a_2 a_3 \cdots a_n + n(n-1)r^{2n-1} + n^2(n-1)r^{n-1} \geq n^3 r^n.
\]

Also, by the AM-GM inequality,
\[
\sum a_2 a_3 \cdots a_n \geq nr^{n-1},
\]
and it suffices to show the inequality
\[
.nr^{2n-1} + n(n-1)r^{2n-1} + n^2(n-1)r^{n-1} \geq n^3 r^n,
\]

which can be rewritten as
\[
n^2 r^{n-1}(r^n - nr + n - 1) \geq 0.
\]

Indeed, by the AM-GM inequality, we get
\[
r^n - nr + n - 1 = r^n + 1 + \cdots + 1 - nr \geq n^{\sqrt[n]{r^n \cdot 1 \cdots 1 - nr}} = 0.
\]

The equality holds for \(a_1 = a_2 = \cdots = a_n = 1 \).
P 1.189. If a_1, a_2, \ldots, a_n are positive real numbers, then

$$\frac{b_1}{a_1} + \frac{b_2}{a_2} + \cdots + \frac{b_n}{a_n} \geq \frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots + \frac{a_n}{b_n},$$

where

$$b_i = \frac{1}{n-1} \sum_{j \neq i} a_j, \quad i = 1, 2, \ldots, n.$$

Solution. Let

$$a = \frac{a_1 + a_2 + \cdots + a_n}{n},$$

$$A = \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}.$$

Using the Cauchy-Schwarz inequality, we have

$$\frac{(n-1)^2}{a_2 + a_3 + \cdots + a_n} \leq \frac{1}{a_2} + \frac{1}{a_3} + \cdots + \frac{1}{a_n} = A - \frac{1}{a_1},$$

$$\frac{n-1}{b_1} \leq A - \frac{1}{a_1},$$

$$\frac{a_1}{b_1} \leq \frac{Aa_1 - 1}{n-1},$$

$$\sum_{i=1}^{n} \frac{a_i}{b_i} \leq \frac{A}{n-1} - \frac{n}{n-1},$$

$$\sum_{i=1}^{n} \frac{a_i}{b_i} \leq \frac{naA}{n-1} - \frac{n}{n-1}.$$

Since

$$\sum_{i=1}^{n} \frac{b_i}{a_i} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{na - a_i}{a_i} = \frac{naA}{n-1} - \frac{n}{n-1},$$

the conclusion follows. The equality holds for $a_1 = a_2 = \cdots = a_n$. \qed

P 1.190. If a_1, a_2, \ldots, a_n are positive real numbers such that

$$a_1 + a_2 + \cdots + a_n = \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n},$$

then
Symmetric Rational Inequalities

(a) \[
\frac{1}{1 + (n-1)a_1} + \frac{1}{1 + (n-1)a_2} + \cdots + \frac{1}{1 + (n-1)a_n} \geq 1; \\
\]

(b) \[
\frac{1}{n - 1 + a_1} + \frac{1}{n - 1 + a_2} + \cdots + \frac{1}{n - 1 + a_n} \leq 1.
\]

(Vasile Cîrtoaje, 1996)

Solution. (a) We use the contradiction method. So, assume that
\[
\frac{1}{1 + (n-1)a_1} + \frac{1}{1 + (n-1)a_2} + \cdots + \frac{1}{1 + (n-1)a_n} < 1,
\]
and show that
\[
a_1 + a_2 + \cdots + a_n > \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}.
\]
Using the substitution
\[
x_i = \frac{1}{1 + (n-1)a_i}, \quad i = 1, 2, \ldots, n,
\]
the hypothesis inequality becomes
\[
x_1 + x_2 + \cdots + x_n < 1.
\]
This inequality involves
\[
1 - x_i > (n-1)b_i, \quad b_i = \frac{1}{n-1} \sum_{j \neq i} x_j, \quad i = 1, 2, \ldots, n.
\]
Using this result and the inequality from the preceding P 1.189, we get
\[
a_1 + a_2 + \cdots + a_n = \sum_{i=1}^{n} \frac{1-x_i}{(n-1)x_i} > \sum_{i=1}^{n} \frac{b_i}{x_i} \geq \sum_{i=1}^{n} \frac{x_i}{b_i}.
\]
Thus, it suffices to show that
\[
\sum_{i=1}^{n} \frac{x_i}{b_i} \geq \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}.
\]
Indeed, we have
\[
\sum_{i=1}^{n} \frac{x_i}{b_i} > \sum_{i=1}^{n} \frac{(n-1)x_i}{1-x_i} = \sum_{i=1}^{n} \frac{1}{a_i}.
\]
The proof is completed. The equality holds for \(a_1 = a_2 = \cdots = a_n = 1\).

(b) The desired inequality follows from the inequality in (a) by replacing \(a_1, a_2, \ldots, a_n\) with \(1/a_1, 1/a_2, \ldots, 1/a_n\), respectively.

\[\square\]
Appendix A

Glossary

1. **AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY**
 If a_1, a_2, \cdots, a_n are nonnegative real numbers, then
 \[a_1 + a_2 + \cdots + a_n \geq n \sqrt[n]{a_1 a_2 \cdots a_n}, \]
 with equality if and only if $a_1 = a_2 = \cdots = a_n$.

2. **WEIGHTED AM-GM INEQUALITY**
 Let p_1, p_2, \cdots, p_n be positive real numbers satisfying
 \[p_1 + p_2 + \cdots + p_n = 1. \]
 If a_1, a_2, \cdots, a_n are nonnegative real numbers, then
 \[p_1 a_1 + p_2 a_2 + \cdots + p_n a_n \geq a_1^{p_1} a_2^{p_2} \cdots a_n^{p_n}, \]
 with equality if and only if $a_1 = a_2 = \cdots = a_n$.

3. **AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY**
 If a_1, a_2, \cdots, a_n are positive real numbers, then
 \[(a_1 + a_2 + \cdots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} \right) \geq n^2, \]
 with equality if and only if $a_1 = a_2 = \cdots = a_n$.
4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a_1, a_2, \cdots, a_n, that is

$$M_k = \begin{cases} \left(\frac{a_1^k + a_2^k + \cdots + a_n^k}{n} \right)^{\frac{1}{k}}, & k \neq 0 \\ \sqrt[n]{a_1 a_2 \cdots a_n}, & k = 0 \end{cases},$$

is an increasing function with respect to $k \in \mathbb{R}$. For instance, $M_2 \geq M_1 \geq M_0 \geq M_{-1}$ is equivalent to

$$\sqrt{\frac{a_1^2 + a_2^2 + \cdots + a_n^2}{n}} \geq \frac{a_1 + a_2 + \cdots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \cdots a_n} \geq \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}}.$$

5. BERNOULLI’S INEQUALITY

For any real number $x \geq -1$, we have

a) $(1 + x)^r \geq 1 + rx$ for $r \geq 1$ and $r \leq 0$;

b) $(1 + x)^r \leq 1 + rx$ for $0 \leq r \leq 1$.

In addition, if a_1, a_2, \cdots, a_n are real numbers such that either $a_1, a_2, \cdots, a_n \geq 0$ or $-1 \leq a_1, a_2, \cdots, a_n \leq 0$, then

$$(1 + a_1)(1 + a_2) \cdots (1 + a_n) \geq 1 + a_1 + a_2 + \cdots + a_n.$$

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality holds

$$a^k(a-b)(a-c) + b^k(b-c)(b-a) + c^k(c-a)(c-b) \geq 0,$$

with equality for $a = b = c$, and for $a = 0$ and $b = c$ (or any cyclic permutation).

For $k = 1$, we get the third degree Schur’s inequality, which can be rewritten as follows

$$a^3 + b^3 + c^3 + 3abc \geq ab(a + b) + bc(b + c) + ca(c + a),$$

$$(a + b + c)^3 + 9abc \geq 4(a + b + c)(ab + bc + ca),$$

$$a^2 + b^2 + c^2 + \frac{9abc}{a + b + c} \geq 2(ab + bc + ca),$$

$$(b - c)^2(b + c - a) + (c - a)^2(c + a - b) + (a - b)^2(a + b - c) \geq 0.$$
For \(k = 2 \), we get the fourth degree Schur’s inequality, which holds for any real numbers \(a, b, c \), and can be rewritten as follows

\[
a^4 + b^4 + c^4 + abc(a + b + c) \geq ab(a^2 + b^2) + bc(b^2 + c^2) + ca(c^2 + a^2),
\]

\[
(b - c)^2(b + c - a)^2 + (c - a)^2(c + a - b)^2 + (a - b)^2(a + b - c)^2 \geq 0,
\]

\[
6abc \geq (p^2 - q)(4q - p^2),
\]

where \(p = a + b + c \), \(q = ab + bc + ca \).

A generalization of the fourth degree Schur’s inequality, which holds for any real numbers \(a, b, c \) and any real number \(m \), is the following (Vasile Cirtoaje, 2004):

\[
\sum (a - mb)(a - mc)(a - b)(a - c) \geq 0,
\]

where the equality holds for \(a = b = c \), and for \(a/m = b = c \) (or any cyclic permutation).

This inequality is equivalent to

\[
\sum a^4 + m(m + 2) \sum a^2b^2 + (1 - m^2)abc \sum a \geq (m + 1) \sum ab(a^2 + b^2),
\]

\[
\sum (b - c)^2(b + c - a - ma)^2 \geq 0.
\]

Another generalization of the fourth degree Schur’s inequality (Vasile Cirtoaje, 2004):

Let \(\alpha, \beta, \gamma \) be real numbers such that

\[1 + \alpha + \beta = 2\gamma.\]

The inequality

\[
\sum a^4 + \alpha \sum a^2b^2 + \beta abc \sum a \geq \gamma \sum ab(a^2 + b^2)
\]

holds for any real numbers \(a, b, c \) if and only if

\[1 + \alpha \geq \gamma^2.\]

\[\square\]

7. CAUCHY-SCHWARZ INEQUALITY

For any real numbers \(a_1, a_2, \ldots, a_n \) and \(b_1, b_2, \ldots, b_n \) we have

\[
(a_1^2 + a_2^2 + \cdots + a_n^2)(b_1^2 + b_2^2 + \cdots + b_n^2) \geq (a_1b_1 + a_2b_2 + \cdots + a_nb_n)^2,
\]

with equality if and only if \(a_i \) and \(b_i \) are proportional for all \(i \).

\[\square\]
8. HÖLDER’S INEQUALITY

If \(x_{ij} (i = 1, 2, \cdots, m; j = 1, 2, \cdots, n) \) are nonnegative real numbers, then
\[
\prod_{i=1}^{m} \left(\sum_{j=1}^{n} x_{ij} \right)^{\frac{m}{n}} \leq \left(\sum_{i=1}^{n} \prod_{i=1}^{m} x_{ij} \right)^{\frac{m}{n}}.
\]

\(\square \)

9. CHEBYSHEV’S INEQUALITY

Let \(a_1 \geq a_2 \geq \cdots \geq a_n \) be real numbers.

a) If \(b_1 \geq b_2 \geq \cdots \geq b_n \), then
\[
n \sum_{i=1}^{n} a_i b_i \geq \left(\sum_{i=1}^{n} a_i \right) \left(\sum_{i=1}^{n} b_i \right);
\]

b) If \(b_1 \leq b_2 \leq \cdots \leq b_n \), then
\[
n \sum_{i=1}^{n} a_i b_i \leq \left(\sum_{i=1}^{n} a_i \right) \left(\sum_{i=1}^{n} b_i \right).
\]

\(\square \)

10. MINKOWSKI’S INEQUALITY

For any real number \(k \geq 1 \) and any positive real numbers \(a_1, a_2, \cdots, a_n \) and \(b_1, b_2, \cdots, b_n \), the inequalities hold
\[
\sum_{i=1}^{n} \left(a_i^k + b_i^k \right)^{\frac{1}{k}} \geq \left(\sum_{i=1}^{n} a_i \right)^k + \left(\sum_{i=1}^{n} b_i \right)^k \]
\[
\sum_{i=1}^{n} (a_i^k + b_i^k + c_i^k)^{\frac{1}{k}} \geq \left(\sum_{i=1}^{n} a_i \right)^k + \left(\sum_{i=1}^{n} b_i \right)^k + \left(\sum_{i=1}^{n} c_i \right)^k \]

\(\square \)

11. REARRANGEMENT INEQUALITY

(1) If \(a_1, a_2, \cdots, a_n \) and \(b_1, b_2, \cdots, b_n \) are two increasing (or decreasing) real sequences, and \((i_1, i_2, \cdots, i_n)\) is an arbitrary permutation of \((1, 2, \cdots, n)\), then
\[
a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \geq a_1 b_{i_1} + a_2 b_{i_2} + \cdots + a_n b_{i_n}
\]
and
\[n(a_1 b_1 + a_2 b_2 + \cdots + a_n b_n) \geq (a_1 + a_2 + \cdots + a_n)(b_1 + b_2 + \cdots + b_n). \]

(2) If \(a_1, a_2, \cdots, a_n \) is decreasing and \(b_1, b_2, \cdots, b_n \) is increasing, then
\[a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \leq a_1 b_{i_1} + a_2 b_{i_2} + \cdots + a_n b_{i_n} \]
and
\[n(a_1 b_1 + a_2 b_2 + \cdots + a_n b_n) \leq (a_1 + a_2 + \cdots + a_n)(b_1 + b_2 + \cdots + b_n). \]

(3) Let \(b_1, b_2, \cdots, b_n \) and \(c_1, c_2, \cdots, c_n \) be two real sequences such that
\[b_1 + \cdots + b_k \geq c_1 + \cdots + c_k, \quad k = 1, 2, \cdots, n. \]
If \(a_1 \geq a_2 \geq \cdots \geq a_n \geq 0 \), then
\[a_1 b_1 + a_2 b_2 + \cdots + a_n b_n \geq a_1 c_1 + a_2 c_2 + \cdots + a_n c_n. \]

Notice that all these inequalities follow immediately from the identity
\[\sum_{i=1}^{n} a_i (b_i - c_i) = \sum_{i=1}^{n} (a_i - a_{i+1}) \left(\sum_{j=1}^{i} b_j - \sum_{j=1}^{i} c_j \right), \]
where \(a_{n+1} = 0. \)

\[\square \]

12. MACLAURIN’S INEQUALITY and NEWTON’S INEQUALITY

If \(a_1, a_2, \ldots, a_n \) are nonnegative real numbers, then
\[S_1 \geq S_2 \geq \cdots \geq S_n \quad (Maclaurin) \]
and
\[S_k^2 \geq S_{k-1} S_{k+1}, \quad (Newton) \]
where
\[S_k = \sqrt[\binom{n}{k}]{\sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{i_1} a_{i_2} \cdots a_{i_k}}. \]

\[\square \]
13. CONVEX FUNCTIONS

A function \(f \) defined on a real interval \(I \) is said to be convex if

\[
f(ax + \beta y) \leq \alpha f(x) + \beta f(y)
\]

for all \(x, y \in I \) and any \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \). If the inequality is reversed, then \(f \) is said to be concave.

If \(f \) is differentiable on \(I \), then \(f \) is (strictly) convex if and only if the derivative \(f' \) is (strictly) increasing. If \(f'' \geq 0 \) on \(I \), then \(f \) is convex on \(I \). Also, if \(f'' \geq 0 \) on \((a, b) \) and \(f \) is continuous on \([a, b] \), then \(f \) is convex on \([a, b] \).

A function \(f : I \rightarrow \mathbb{R} \) is half convex on a real interval \(I \) if there exists a point \(s \in I \) such that \(f \) is convex on \(I_{u \leq s} \) or \(I_{u \geq s} \).

A function \(f : I \rightarrow \mathbb{R} \) is right partially convex related to a a point \(s \in I \) if there exists a number \(s_0 \in I, s_0 > s \), such that \(f \) is convex on \(I_{u \in [s, s_0]} \). Also, a function \(f : I \rightarrow \mathbb{R} \) is left partially convex related to a a point \(s \in I \) if there exists a point \(s_0 \in I, s_0 < s \), such that \(f \) is convex on \(I_{u \in [s_0, s]} \).

Jensen’s inequality. Let \(p_1, p_2, \ldots, p_n \) be positive real numbers. If \(f \) is a convex function on a real interval \(I \), then for any \(a_1, a_2, \ldots, a_n \in I \), the inequality holds

\[
\frac{p_1 f(a_1) + p_2 f(a_2) + \cdots + p_n f(a_n)}{p_1 + p_2 + \cdots + p_n} \geq f \left(\frac{p_1 a_1 + p_2 a_2 + \cdots + p_n a_n}{p_1 + p_2 + \cdots + p_n} \right).
\]

For \(p_1 = p_2 = \cdots = p_n \), Jensen’s inequality becomes

\[
f(a_1) + f(a_2) + \cdots + f(a_n) \geq nf \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right).
\]

Based on the following three theorems, we can extend this form of Jensen’s inequality to half or partially convex functions.

Half Convex Function-Theorem (Vasile Cirtoaje, 2004). Let \(f(u) \) be a function defined on a real interval \(I \) and convex on \(I_{u \leq s} \) or \(I_{u \geq s} \), where \(s \in I \). The inequality

\[
f(a_1) + f(a_2) + \cdots + f(a_n) \geq nf \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right)
\]

holds for all \(a_1, a_2, \ldots, a_n \in I \) satisfying \(a_1 + a_2 + \cdots + a_n = ns \) if and only if

\[
f(x) + (n - 1)f(y) \geq nf(s)
\]

for all \(x, y \in I \) such that \(x + (n - 1)y = ns \).

Right Partially Convex Function-Theorem (Vasile Cirtoaje, 2012). Let \(f \) be a function defined on a real interval \(I \) and convex on \([s, s_0] \), where \(s, s_0 \in I, s < s_0 \). In addition, \(f \) is decreasing on \(I_{u \leq s_0} \) and

\[
\min_{u \geq s} f(u) = f(s_0).
\]
The inequality

\[f(a_1) + f(a_2) + \cdots + f(a_n) \geq \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right) \]

holds for all \(a_1, a_2, \ldots, a_n \in \mathbb{I} \) satisfying \(a_1 + a_2 + \cdots + a_n = ns \) if and only if

\[f(x) + (n-1)f(y) \geq nf(s) \]

for all \(x, y \in \mathbb{I} \) such that \(x \leq s \leq y \) and \(x + (n-1)y = ns \).

Left Partially Convex Function-Theorem (Vasile Cirtoaje, 2012). Let \(f \) be a function defined on a real interval \(\mathbb{I} \) and convex on \([s_0, s]\), where \(s_0, s \in \mathbb{I}, s_0 < s \). In addition, \(f \) is increasing on \(I_{u \geq s_0} \) and satisfies

\[\min_{u \leq s} f(u) = f(s_0). \]

The inequality

\[f(a_1) + f(a_2) + \cdots + f(a_n) \geq \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right) \]

holds for all \(x_1, x_2, \ldots, x_n \in \mathbb{I} \) satisfying \(a_1 + a_2 + \cdots + a_n = ns \) if and only if

\[f(x) + (n-1)f(y) \geq nf(s) \]

for all \(x, y \in \mathbb{I} \) such that \(x \geq s \geq y \) and \(x + (n-1)y = ns \).

In all these theorems, we may replace the hypothesis condition

\[f(x) + (n-1)f(y) \geq nf(s), \]

by the equivalent condition

\[h(x, y) \geq 0 \quad \text{for all} \quad x, y \in \mathbb{I} \quad \text{such that} \quad x + (n-1)y = ns, \]

where

\[h(x, y) = \frac{g(x)-g(y)}{x-y}, \quad g(u) = \frac{f(u)-f(s)}{u-s}. \]

The following theorem is also useful to prove some symmetric inequalities.

Left Convex-Right Concave Function Theorem (Vasile Cirtoaje, 2004). Let \(a < c \) be real numbers, let \(f \) be a continuous function on \(\mathbb{I} = [a, \infty) \), strictly convex on \([a, c]\) and strictly concave on \([c, \infty)\), and let

\[E(a_1, a_2, \ldots, a_n) = f(a_1) + f(a_2) + \cdots + f(a_n). \]

If \(a_1, a_2, \ldots, a_n \in \mathbb{I} \) such that

\[a_1 + a_2 + \cdots + a_n = S = \text{constant}, \]

then
(a) \(E \) is minimum for \(a_1 = a_2 = \cdots = a_{n-1} \leq a_n \);
(b) \(E \) is maximum for either \(a_1 = a \) or \(a < a_1 \leq a_2 = \cdots = a_n \).

On the other hand, it is known the following result concerning the best upper bound of Jensen’s difference.

Best Upper Bound of Jensen’s Difference-Theorem (Vasile Cirtoaje, 1989). Let \(p_1, p_2, \cdots, p_n \) be fixed positive real numbers, and let \(f \) be a convex function on a closed interval \(\mathbb{I} = [a, b] \). If \(a_1, a_2, \cdots, a_n \in \mathbb{I} \), then Jensen’s difference

\[
D = \frac{p_1 f(a_1) + p_2 f(a_2) + \cdots + p_n f(a_n)}{p_1 + p_2 + \cdots + p_n} - f\left(\frac{p_1 a_1 + p_2 a_2 + \cdots + p_n a_n}{p_1 + p_2 + \cdots + p_n}\right)
\]

is maximum when some of \(a_i \) are equal to \(a \), and the others \(a_i \) are equal to \(b \); that is, when all \(a_i \in \{a, b\} \).

\[\square\]

14. KARAMATA’S MAJORIZATION INEQUALITY

We say that a vector \(\vec{A} = (a_1, a_2, \ldots, a_n) \) with \(a_1 \geq a_2 \geq \cdots \geq a_n \) majorizes a vector \(\vec{B} = (b_1, b_2, \ldots, b_n) \) with \(b_1 \geq b_2 \geq \cdots \geq b_n \), and write it as

\[
\vec{A} \geq \vec{B},
\]

if
\[
\begin{align*}
a_1 &\geq b_1, \\
a_1 + a_2 &\geq b_1 + b_2, \\
&\cdots \cdots \\
a_1 + a_2 + \cdots + a_{n-1} &\geq b_1 + b_2 + \cdots + b_{n-1}, \\
a_1 + a_2 + \cdots + a_n &\geq b_1 + b_2 + \cdots + b_n,
\end{align*}
\]

Let \(f \) be a convex function on a real interval \(\mathbb{I} \). If a decreasingly ordered vector

\[
\vec{A} = (a_1, a_2, \ldots, a_n), \quad a_i \in \mathbb{I},
\]

majorizes a decreasingly ordered vector

\[
\vec{B} = (b_1, b_2, \ldots, b_n), \quad b_i \in \mathbb{I},
\]

then

\[
f(a_1) + f(a_2) + \cdots + f(a_n) \geq f(b_1) + f(b_2) + \cdots + f(b_n).
\]

\[\square\]
15. POPOVICIU’S INEQUALITY

If \(f \) is a convex function on a real interval \(\mathbb{I} \) and \(a_1, a_2, \ldots, a_n \in \mathbb{I} \), then
\[
f(a_1) + f(a_2) + \cdots + f(a_n) + n(n-2)f \left(\frac{a_1 + a_2 + \cdots + a_n}{n} \right) \geq \]
\[
(n-1)\left[f(b_1) + f(b_2) + \cdots + f(b_n) \right],
\]
where
\[
b_i = \frac{1}{n-1} \sum_{j \neq i} a_j, \quad i = 1, 2, \ldots, n.\]

\[\Box\]

16. SQUARE PRODUCT INEQUALITY

Let \(a, b, c \) be real numbers, and let
\[
p = a + b + c, \quad q = ab + bc + ca, \quad r = abc,
\]
\[
s = \sqrt{p^2 - 3q} = \sqrt{a^2 + b^2 + c^2 - ab - bc - ca}.
\]
From the identity
\[
27(a - b)^2(b - c)^2(c - a)^2 = 4(p^2 - 3q)^3 - (2p^3 - 9pq + 27r)^2,
\]
it follows that
\[
\frac{-2p^3 + 9pq - 2(p^2 - 3q)\sqrt{p^2 - 3q}}{27} \leq r \leq \frac{-2p^3 + 9pq + 2(p^2 - 3q)\sqrt{p^2 - 3q}}{27},
\]
which is equivalent to
\[
\frac{p^3 - 3ps^2 - 2s^3}{27} \leq r \leq \frac{p^3 - 3ps^2 + 2s^3}{27}.
\]
Therefore, for constant \(p \) and \(q \), the product \(r \) is minimal and maximal when two of \(a, b, c \) are equal.

\[\Box\]

17. VASC’S INEQUALITY

If \(a, b, c \) are real numbers, then
\[
(a^2 + b^2 + c^2)^2 \geq 3(a^3 b + b^3 c + c^3 a),
\]
with equality for \(a = b = c \), and also for
\[
\frac{a}{\sin^2 \frac{4\pi}{7}} = \frac{b}{\sin^2 \frac{2\pi}{7}} = \frac{c}{\sin^2 \frac{\pi}{7}}\]
(or any cyclic permutation) - Vasile Cirtoaje, 1991.

A generalization of this inequality is the following (Vasile Cirtoaje, 2007):

$$\sum a^4 + A \sum a^2 b^2 + B a b c \sum a \geq C \sum a^3 b + D \sum a b^3,$$

where A, B, C, D are real numbers such that

$$1 + A + B = C + D,$$

$$3(1 + A) \geq C^2 + CD + D^2.$$

\[\□\]\[\□\]

18. SYMMETRIC INEQUALITIES OF DEGREE THREE, FOUR OR FIVE

Let $f_n(a, b, c)$ be a symmetric homogeneous polynomial of degree $n = 3, 4$ or 5.

(a) The inequality $f_4(a, b, c) \geq 0$ holds for all real numbers a, b, c if and only if $f_4(a, 1, 1) \geq 0$ for all real a;

(b) The inequality $f_6(a, b, c) \geq 0$ holds for all $a, b, c \geq 0$ if and only if $f_6(a, 1, 1) \geq 0$ and $f_6(0, b, c) \geq 0$ for all $a, b, c \geq 0$ (Vasile Cirtoaje, 2008).

\[\□\]\[\□\]

19. SYMMETRIC INEQUALITIES OF DEGREE SIX

Any sixth degree symmetric homogeneous polynomial $f_6(a, b, c)$ can be written in the form

$$f_6(a, b, c) = A r^2 + B(p, q)r + C(p, q),$$

where A is called the highest coefficient of f_6, and

$$p = a + b + c, \quad q = a b + b c + c a, \quad r = a b c.$$

Case 1: $A \leq 0$. The following statement holds.

(a) The inequality $f_6(a, b, c) \geq 0$ holds for all real numbers a, b, c if and only if $f_6(a, 1, 1) \geq 0$ for all real a;

(b) The inequality $f_6(a, b, c) \geq 0$ holds for all $a, b, c \geq 0$ if and only if $f_6(a, 1, 1) \geq 0$ and $f_6(0, b, c) \geq 0$ for all $a, b, c \geq 0$ (Vasile Cirtoaje, 2008).

Case 2: $A > 0$. We can use the highest coefficient cancellation method (Vasile Cirtoaje, 2008). This method consists in finding some suitable real numbers B, C and D such that the following sharper inequality holds

$$f_6(a, b, c) \geq A \left(r + B p^3 + C p q + D \frac{q^2}{p} \right)^2.$$
Because the function g_6 defined by

$$g_6(a, b, c) = f_6(a, b, c) - A\left(r + Bp^3 + Cpq + D\frac{q^2}{p}\right)^2$$

has the highest coefficient $A_1 = 0$, we can prove the inequality $g_6(a, b, c) \geq 0$ as in the preceding case 1.

Notice that sometimes it is useful to break the problem into two parts, $p^2 \leq \xi q$ and $p^2 > \xi q$, where ξ is a suitable real number.

\[\square \]

20. EQUAL VARIABLE METHOD

The Equal Variable Theorem (EV-Theorem) for nonnegative real variables has the following statement (Vasile Cirtoaje, 2005).

EV-Theorem (for nonnegative variables). Let a_1, a_2, \cdots, a_n ($n \geq 3$) be fixed nonnegative real numbers, and let $x_1 \leq x_2 \leq \cdots \leq x_n$ be nonnegative real variables such that

$$x_1 + x_2 + \cdots + x_n = a_1 + a_2 + \cdots + a_n,$$

$$x_1^k + x_2^k + \cdots + x_n^k = a_1^k + a_2^k + \cdots + a_n^k,$$

where k is a real number (for $k = 0$, assume that $x_1x_2\cdots x_n = a_1a_2\cdots a_n > 0$). Let $f : (0, \infty) \to \mathbb{R}$ be a differentiable function such that $g : (0, \infty) \to \mathbb{R}$ defined by

$$g(x) = f'(x^{\frac{k}{k-1}})$$

is strictly convex, and let

$$S_n = f(x_1) + f(x_2) + \cdots + f(x_n).$$

1. If $k \leq 0$, then S_n is maximum for

$$0 < x_1 = x_2 = \cdots = x_{n-1} \leq x_n,$$

and is minimum for

$$0 < x_1 \leq x_2 = x_3 = \cdots = x_n;$$

2. If $k > 0$ and either f is continuous at $x = 0$ or $f(0^+) = -\infty$, then S_n is maximum for

$$0 \leq x_1 = x_2 = \cdots = x_{n-1} \leq x_n,$$

and is minimum for

$$x_1 = \cdots = x_{j-1} = 0, \ x_{j+1} = \cdots = x_n,$$
where \(j \in \{1, 2, \cdots, n\} \).

For \(f(x) = x^m \), we get the following corollary.

EV-COROLLARY (for nonnegative variables). Let \(a_1, a_2, \cdots, a_n \ (n \geq 3) \) be fixed nonnegative real numbers, let \(x_1 \leq x_2 \leq \cdots \leq x_n \) be nonnegative real variables such that

\[
x_1 + x_2 + \cdots + x_n = a_1 + a_2 + \cdots + a_n, \\
x_1^k + x_2^k + \cdots + x_n^k = a_1^k + a_2^k + \cdots + a_n^k,
\]

and let

\[
S_n = x_1^m + x_2^m + \cdots + x_n^m.
\]

Case 1: \(k \leq 0 \) (for \(k = 0 \), assume that \(x_1 x_2 \cdots x_n = a_1 a_2 \cdots a_n > 0 \).

(a) If \(m \in (k, 0) \cup (1, \infty) \), then \(S_n \) is maximum for

\[
0 < x_1 = x_2 = \cdots = x_{n-1} \leq x_n,
\]

and is minimum for

\[
0 < x_1 \leq x_2 = x_3 = \cdots = x_n;
\]

(b) If \(m \in (-\infty, k) \cup (0, 1) \), then \(S_n \) is minimum for

\[
0 < x_1 = x_2 = \cdots = x_{n-1} \leq x_n,
\]

and is maximum for

\[
0 < x_1 \leq x_2 = x_3 = \cdots = x_n.
\]

Case 2: \(0 < k < 1 \).

(a) If \(m \in (0, k) \cup (1, \infty) \), then \(S_n \) is maximum for

\[
0 \leq x_1 = x_2 = \cdots = x_{n-1} \leq x_n,
\]

and is minimum for

\[
x_1 = \cdots = x_{j-1} = 0, \ x_{j+1} = \cdots = x_n,
\]

where \(j \in \{1, 2, \cdots, n\} \);

(b) If \(m \in (-\infty, 0) \cup (k, 1) \), then \(S_n \) is minimum for

\[
0 \leq x_1 = x_2 = \cdots = x_{n-1} \leq x_n,
\]

and is maximum for

\[
x_1 = \cdots = x_{j-1} = 0, \ x_{j+1} = \cdots = x_n,
\]

where \(j \in \{1, 2, \cdots, n\} \).

Case 3: \(k > 1 \).
(a) If \(m \in (0, 1) \cup (k, \infty) \), then \(S_n \) is maximum for
\[
0 \leq x_1 = x_2 = \cdots = x_{n-1} \leq x_n,
\]
and is minimum for
\[
x_1 = \cdots = x_{j-1} = 0, \ x_{j+1} = \cdots = x_n,
\]
where \(j \in \{1, 2, \cdots, n\} \);
(b) If \(m \in (-\infty, 0) \cup (1, k) \), then \(S_n \) is minimum for
\[
0 \leq x_1 = x_2 = \cdots = x_{n-1} \leq x_n,
\]
and is maximum for
\[
x_1 = \cdots = x_{j-1} = 0, \ x_{j+1} = \cdots = x_n,
\]
where \(j \in \{1, 2, \cdots, n\} \).

The Equal Variable Theorem (EV-Theorem) for real variables has the following
statement (Vasile Cirtoaje, 2012).

EV-Theorem (for real variables). Let \(a_1, a_2, \cdots, a_n \ (n \geq 3) \) be fixed real numbers, let
\(x_1 \leq x_2 \leq \cdots \leq x_n \) be real variables such that
\[
x_1 + x_2 + \cdots + x_n = a_1 + a_2 + \cdots + a_n,
\]
\[
x_1^k + x_2^k + \cdots + x_n^k = a_1^k + a_2^k + \cdots + a_n^k,
\]
where \(k \) is an even positive integer, and let \(f \) be a differentiable function on \(\mathbb{R} \) such that the
associated function \(g : \mathbb{R} \to \mathbb{R} \) defined by
\[
g(x) = f'(k\sqrt{x})
\]
is strictly convex on \(\mathbb{R} \). Then, the sum
\[
S_n = f(x_1) + f(x_2) + \cdots + f(x_n)
\]
is minimum for \(x_2 = x_3 = \cdots = x_n \), and is maximum for \(x_1 = x_2 = \cdots = x_{n-1} \).

\[\square\]

21. ARITHMETIC COMPENSATION METHOD

The Arithmetic Compensation Theorem (AC-Theorem) has the following statement (Vasile Cirtoaje, 2002).

AC-Theorem. Let \(s > 0 \) and let \(F \) be a symmetric continuous function on the compact set in \(\mathbb{R}^n \)
\[
S = \{(x_1, x_2, \cdots, x_n) : x_1 + x_2 + \cdots + x_n = s, \ x_i \geq 0, \ i = 1, 2, \cdots, n\}.
\]
If
\[F(x_1, x_2, x_3, \ldots, x_n) \geq \min \left\{ F \left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}, x_3, \ldots, x_n \right), F(0, x_1 + x_2, x_3, \ldots, x_n) \right\} \]
for all \((x_1, x_2, \ldots, x_n) \in S\), then \(F(x_1, x_2, x_3, \ldots, x_n)\) is minimal when
\[x_1 = x_2 = \cdots = x_k = \frac{s}{k}, \quad x_{k+1} = \cdots = x_n = 0; \]
that is,
\[F(x_1, x_2, x_3, \ldots, x_n) \geq \min_{1 \leq k \leq n} F \left(\frac{s}{k}, \ldots, \frac{s}{k}, 0, \ldots, 0 \right) \]
for all \((x_1, x_2, \ldots, x_n) \in S\).

Notice that if
\[F(x_1, x_2, x_3, \ldots, x_n) < F \left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}, x_3, \ldots, x_n \right) \]
involves
\[F(x_1, x_2, x_3, \ldots, x_n) \geq F(0, x_1 + x_2, x_3, \ldots, x_n), \]
then the hypothesis
\[F(x_1, x_2, x_3, \ldots, x_n) \geq \]
\[\geq \min \left\{ F \left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}, x_3, \ldots, x_n \right), F(0, x_1 + x_2, x_3, \ldots, x_n) \right\} \]
is satisfied.